ECE-700 Digital Signal Processing Winter 2007
Homework #b5 Feb. 7, 2007

HOMEWORK SOLUTIONS #5

1. (a) Consider the k" branch.

yelm] wltl 1 p ) H@*w[n]
efj%'kn
We have
apn] = (Zh[i}vk[n—q) eI R kn

[n— i]efj%”k(n*i)

2
Z h[i]e*j%ki U
T —
hi[d]
where we have rewritten the branch output as the convolution of a modulated filter response

hi[i] with a modulated input vy, [n]e‘j%’m.
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Noting that vy [n] is zero-valued unless n is a multiple of N, and that e 7 Fkn equals one when
n is a multiple of N, we see that the modulation has no effect. Hence the block diagram can
be rewritten
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To apply the Noble identity, we must expand Hj(z) into a parallel bank of upsampled
polyphase filters. Defining ps[m] = h[mN + ¢], we find
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thus the block diagram for the k*" filterbank branch becomes
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Realizing that the gain e™J Tk on the (th polyphase branch is not a function of the time
index, we can put it before the filter and upsampler. Combining this with the use of a Noble

identity, we get the equivalent diagram below.
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Recall that the previous block diagram represents the processing required by the k" filterbank
branch. Notice, however, that the polyphase filters { P;(z)} and the parallel-to-serial converter
are common to all branches kK = 0,..., N —1; the difference between branches is determined
only by the gains e~J Tk on the left of the structure. Recall also that the system output is

given by the branch sum

Rather than summing x[n] over k, we can sum wy [n] over k (for each ¢):
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then apply the values wy[n] to a single polyphase reconstruction bank. Observe that the

operation is equivalent to multiplication by a DFT matrix. The result looks like the diagram

on the right below.
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2. See plots on homework assignment.
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3. Bi-orthogonal FIR perfect reconstruction plots appear below. Plots are given for various root

group allocations. In all cases, we get real-valued linear-phase perfectly reconstructing filters.

PR filterbank input—output comparison
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