
ECE-700 Digital Signal Processing Winter 2007

Homework #4 Jan. 31, 2007

HOMEWORK SOLUTIONS #4

1. (b) In this problem, L = 10 and the input signal is bandlimited to ω = 0.9π. For the Kaiser

formula ∆ω = 2π−ω0

L − ω0

L = π
50

and δ1 = δ2 = 10−40/20 = 0.01, giving Nh = 185. The filter

design specs are shown below, where v[m] denotes the upsampler output.
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The plot on the following page shows the result of our Matlab simulation. The input signal,

bandlimited to 0.9π, is shown on the top subplot. The next subplot shows the upsampled

signal superimposed on the previously designed H(ejω), where it is evident that the filter’s

transition bands are aligned with the spectral locations lacking energy. The third subplot

shows the interpolated output, within which the dotted line shows that the unwanted images

lie more than 40 dB below the desired spectral component. The final subplot zooms into the

desired spectral component to show that it is a faithful representation of the input signal.
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(c) The filter design procedure for two-stage interpolation is as follows: For G(z), we have the

passband edge at ω0

2
and the stopband edge at 2π−ω0

2
. leaving a single transition band centered

at π/2. Thus, for calculation of Ng, we use ∆ω = 2π−ω0

2
− ω0

2
= π

10
, δ1 = 0.01

2
, and δ2 = 0.01,

giving Ng = 42. For F (z), we have the passband edge at ω0/2

5
and the first stopband edge at

2π−ω0/2

5
, which leaves the first transition band centered at π

5
. Other transition bands exist

centered at 3π
5

and π. Thus, for calculation of Nf , we have ∆ω = 4π−ω0

10
− ω0

10
= 11π

50
, δ1 = 0.01

2
,

and δ2 = 0.01, giving Nf = 19.

The plot on the following page shows the result of our Matlab simulation. The input signal,

bandlimited to 0.9π, is shown on the top subplot. The next subplot shows the upsampled-

by-2 signal superimposed on G(ejω), where it is evident that the filter’s transition bands are

aligned with the spectral locations lacking energy. The third subplot shows the upsampled-

by-10 signal superimposed on F (ejω), where again it is evident that the filter’s transition

bands are aligned with the spectral locations lacking energy. The fourth subplot shows the

final output, within which the dotted line shows that the unwanted images lie more than 40

dB below the desired spectral component. The final subplot zooms into the desired spectral

component to show that it is a faithful representation of the input signal.
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(d) The final plot shows a direct comparison of the effective LPFs for the two structures. The

single-stage structure has LPF H(z), while the two-stage structure has G(z5)F (z), where

the impulse response of G(z5) is a 5-upsampled version of the impulse response of G(z).

We note that the effective LPFs are quite similar in character, but we know that the two-

stage structure requires is more computationally efficient. Specifically, if we use polyphase

implementations, the one-stage structure requires Nh = 185 MACs per input point, while the

two-stage structure requires Ng + 2Nf = 80.
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2. (a) When L = 4, H1(z
L) is a 4-upsampled version of the LPF H1(z) and has DTFT H1(e

jωL).

The top subplot below shows this DTFT.

The effectiveness of this structure hinges on the fact that H1(z
L) is a linear phase filter with

group delay L1−1

2
L. This will ensure that H1(z

L) and z−
L1−1

2
L −H1(z

L) are complementary

filters. To see why, recall that if H1(z) is linear phase with odd length L1, then H1(z
L) is

linear phase with odd length L(L1 − 1) + 1, meaning that its DTFT can be written

H1(e
jωL) = H̃1(e

jωL)e−jω
L1−1

2
L for H̃1(e

jωL) ∈ R.

Using this result, z−
L1−1

2
L − H1(z

L) has the DTFT

e−jω
L1−1

2
L − H1(e

jωL) =
(

1 − H̃1(e
jωL)

)

e−jω
L1−1

2
L.

Note that passbands of H1(z
L) are stopbands of z−

L1−1

2
L − H1(z

L) and vice-a-versa. The

middle subplot below shows the zero-phase component of this DTFT, i.e., 1 − H̃1(e
jωL).

Superimposing G1(e
jω) and G2(e

jω) onto the top and middle plots, respectively, we see that

these filters are capable of removing the rightmost spectral images if their transition bands are

less than π−∆ω
4

. The summed outputs of G1(z) and G2(z) will add coherently since G1(e
jω)

and G2(e
jω) have the same phase response, a consequence of the fact that these filters are

linear phase and of equal lengths. In other words,

G1(e
jω) = G̃1(e

jω)e−jωd for some d and G̃1(e
jω) ∈ R

G2(e
jω) = G̃2(e

jω)e−jωd for some d and G̃2(e
jω) ∈ R

The result (i.e., the system output) is illustrated in the lower subplot. Note that the total

system acts as a lowpass filter with cutoff at 5π
8

and transition bandwidth ∆ω
4

.
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(b) For L = 8, images in H1(e
jLω) repeat every multiple of 2π

L = π
4

and have edge widths ∆ω
8

,

where ∆ω is the transition bandwidth of H1(z). Since we would like the total system to have

a transition bandwidth of 0.02π,

∆ω

8
= 0.02π ⇒ ∆ω = 0.16π

If we center the cutoff of H1(z) at π
2
, the right edge of the first image in H1(e

jLω) will be

centered at π
16

, and the left edge of the fourth image will be centered at 11π
16

. (See diagram

below.) Then designing G1(z) to filter out the rightmost two images in its input spectrum and

G2(z) to filter out the rightmost image in its input spectrum, we obtain the desired system

response. For this we need the cutoff of G1(z) centered at 5π
8

and the cutoff of G2(z) centered

at 3π
4

, and we need that both G1(z) and G2(z) have transition bandwidths of π−∆ω
8

= 0.84π
8

.
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To consider ripple performance, we need to consider four separate regions. We will work with

the zero-phase components of H̃1(e
jLω), G̃1(e

jω), and G̃2(e
jω).

A) In this region we are in the passband of G1 and G2, so we say that G̃1(e
jω) = 1 +

δp(G̃1(e
jω)) and G̃2(e

jω) = 1 + δp(G̃2(e
jω)). Then the zero-phase component of the

system output response is

G̃1(e
jω)H̃1(e

jLω) + G̃2(e
jω)

(

1 − H̃1(e
jLω)

)

=
(

1 + δp(G̃1(e
jω))

)

H̃1(e
jLω) +

(

1 + δp(G̃2(e
jω))

)(

1 − H̃1(e
jLω)

)

= 1 +
(

δp(G̃1(e
jω)) − δp(G̃2(e

jω))
)

H̃1(e
jLω) + δp(G̃2(e

jω))

=

{

1 + δp(G̃2(e
jω)) when H̃1(e

jLω) ≈ 0

1 + δp(G̃1(e
jω)) when H̃1(e

jLω) ≈ 1

Note that, in this region, the response (hence ripples) of H1 cancel out!
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B) In this region, we are in the transition band of G̃1, the passband of G̃2, and the stopband

of H̃1, so we say that G̃2(e
jω) = 1 + δp(G̃2(e

jω)) and H̃1(e
jLω) = δs(H̃1(e

jLω)). Then

the zero-phase component of the system output response is

G̃1(e
jω)H̃1(e

jLω) + G̃2(e
jω)

(

1 − H̃1(e
jLω)

)

= G̃1(e
jω)δs(H̃1(e

jLω)) +
(

1 + δp(G̃2(e
jω))

)(

1 − δs(H̃1(e
jLω))

)

≈ G̃1(e
jω)δs(H̃1(e

jLω)) + 1 + δp(G̃2(e
jω)) − δs(H̃1(e

jLω))

= 1 +
(

G̃1(e
jω) − 1

)

δs(H̃1(e
jLω)) + δp(G̃2(e

jω))

Thus on the left side of this region, where G̃1(e
jω) ≈ 1, the stopband ripples in H1 cancel

out, leaving only the passband ripples of G2. But on the right side of this region, where

G̃1(e
jω) ≈ 0, the stopband ripples of H1 are not attenuated, and they may add to the

passband ripples of G1. This is confirmed in the matlab plots, where it is easily seen that

the ripples get worse towards the right edge of this region.

C) In this region, we are in the stopband of G̃1, the transition band of G̃2, and the passband

of H1, so we say that G̃1(e
jω) = δs(G̃1(e

jω)) and H̃1(e
jLω) = 1 + δp(H̃1(e

jLω)). Then

the zero-phase component of the system output response is

G̃1(e
jω)H̃1(e

jLω) + G̃2(e
jω)

(

1 − H̃1(e
jLω)

)

= δs(G̃1(e
jω))

(

1 + δp(H̃1(e
jLω))

)

− G̃2(e
jω)δp(H̃1(e

jLω))

≈ δs(G̃1(e
jω)) − G̃2(e

jω)δp(H̃1(e
jLω))

Thus on the left side of this region, where G̃2(e
jω) ≈ 1, the passband ripples in H1 are

not attenuated, and they may add to the stopband ripples of G1. But on the right side of

this region, where G̃2(e
jω) ≈ 0, the passband ripples of H1 are attenuated, leaving only

the stopband ripples of G1. This is confirmed in the matlab plots, where it is easily seen

that the ripples get worse towards the right edge of this region.

D) In this region we are in the stopband of G1 and G2, so we say that G̃1(e
jω) = δs(G̃1(e

jω))

and G̃2(e
jω) = δs(G̃2(e

jω)). Then the zero-phase component of the system output re-

sponse is

G̃1(e
jω)H̃1(e

jLω) + G̃2(e
jω)

(

1 − H̃1(e
jLω)

)

= δs(G̃1(e
jω))H̃1(e

jLω) + δs(G̃2(e
jω))

(

1 − H̃1(e
jLω)

)

=

{

δs(G̃2(e
jω)) when H̃1(e

jLω) ≈ 0

δs(G̃1(e
jω)) when H̃1(e

jLω) ≈ 1

Note that, in this region also, the response (hence ripples) of H1 cancel out!

Let’s now summarize our findings. Throughout most of the total system’s passband, the

ripple is determined alternately by the passband ripples of G1 and G2. Thus we should set

them equal, i.e., δp(G̃1(e
jω)) = δp(G̃2(e

jω)). Likewise, throughout most of the total system’s

stopband, the ripple is determined alternately by the stopband ripples of G1 and G2. Thus we

should set them equal, i.e., δs(G̃1(e
jω)) = δs(G̃2(e

jω)). Next, the edge of the total system’s

passband has the ripple contributions from both δs(H̃1(e
jLω)) and δp(G̃(ejω)). Similarly, the

edge of the total system’s stopband has the ripple contributions from both δp(H̃1(e
jLω)) and

δs(G̃(ejω)). If we desire that the total system has both passband ripple and stopband ripple

equal to δ = 0.05, we could set

δs(H̃1(e
jLω)) = δp(H̃1(e

jLω)) = δs(G̃(ejω)) = δp(G̃(ejω)) =
δ

2
= 0.025.
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(c) Straightforward FIR lowpass:

N ≈
−10 log10(δsδp) − 13

2.3 · ∆ω
=

−10 log10(0.052) − 13

2.3 · 0.02π
≈ 90

New structure:

NG1
= NG2

≈
−10 log10(0.0252) − 13

2.3 · 0.84π
8

≈ 25

NH1
≈

−10 log10(0.0252) − 13

2.3 · 0.16π
≈ 17

So the total number of multiplications per output for the new structure is ≈ 17 + 2 · 25 = 67.

Actually, H1 is a “halfband” filter and so about half of its coefficients are zero, making the

real total ≈ 60.

(d) See the plot below.
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