
ECE-700 Digital Signal Processing Winter 2007

Homework #2 Jan. 17, 2007

HOMEWORK SOLUTIONS #2

1. (a) Denoting the signal after the downsampler by v[m], we see that
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Note that we made the substitution z = ejω for the last step.

(b) Denoting the signal after the delay by v[m], we see that
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(c) Here zeros are inserted between the samples of x[n], but then the same zeros are discarded,

so that x[n] = y[n] and Y (ejω) = X(ejω). This can be verified in the z domain as follows.

Denoting the signal after the upsampler by v[m], we see that

V (z) = X(zM )
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where we use the fact that e−j2πp = 1 for all integer p.

(d) Since M ≥ 3, the upsampled sequence is delayed such that the downsampler retains only

zeros. Thus, Y (ejω) = 0. This can be verified in the z domain as follows. Denoting the signal
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after the delay by v[m], we see that

V (z) = z−2X(zM )
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︸ ︷︷ ︸
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where we have used the fact that M > 2 in the last step.

2. The black box could be constructed to interleave the three sampled sequences as in the figure below

. . . , x1[0], x2[0], x3[0], x1[1], x2[1], x3[1], x1[2], x2[2], x3[2], . . .

which is equal to

. . . , xc(0), xc(T/3), xc(2T/3), xc(T ), xc(4T/3), xc(5T/3), xc(2T ), xc(7T/3), xc(8T/3), . . .

so that y[m] = xc(mT/3) for m ∈ Z. Thus y[m] is a uniformly-sampled version of xc(t) with

sampling rate 3/T . Since xc(t) is bandlimited to 1.25/T , any sampling rate higher than 2.5/T

is sufficient to prevent aliasing. Thus, xc(t) can be perfectly reconstructed using the standard

sinc-interpolation

xc(t) =

∞∑

m=−∞

y[m]
sin
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3
)
)

3π
T
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3
)
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x3[n] ↑ 3

↑ 3

↑ 3 +
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z−2
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3. Since all sequences and coefficients are real-valued, all DTFTs are conjugate symmetric. Using

this fact and the results of problem 1, Y (ejω) has the form below.

X(ejω) Y (ejω)

1 1

2π
3
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3

π
3

π
3

π π0 0
ω ω

The filters Hk(ejω) isolate various parts of the spectrum, as below.
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4. Since

X(ejωk) =
∞∑

n=−∞

x[n]e−jωkn

we can construct a generalized DFT matrix using Wk = e−jωk :
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Due to the Vandermonde structure of this matrix, we know that if ωk 6= ωℓ for k 6= ℓ, the matrix

is invertible. Thus x = W−1X. Using X(ejωk) = k and ωk = 2πk/N + 0.1 cos(2πk/N) for

k = 0, 1, . . . , N−1, we generate the following plot:
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5. The following code implemented our interpolator, whose plots where given in the problem state-

ment.

% solution for ece700 homework 2 problem 5

% generate bandlimited signal

N_x = 1000;

N_g = 51;

u = randn(1,N_x+N_g);

g = firpm(N_g-1,[0,.6,0.8,1],[1,1,0,0]);

x = conv(u,g);

x = x(1+(N_g-1)/2:N_x+(N_g-1)/2);

% design interpolation filter

N_h = 33;

h = firpm(N_h-1,[0,8/30,12/30,28/30],[3,3,0,0]);

% upsample and filter

v = zeros(1,3*length(x)); v(1:3:end) = x;

y = conv(v,h);

% plot spectra

M = 2^ceil(log2(length(y))+2); % dft length

figure(1)

subplot(221)

plot(2*[0:M-1]/M,abs(fft(u,M))); title(’fullband signal u[n]’);

subplot(222)

plot(2*[0:M-1]/M,abs(fft(x,M))); title(’filtered signal x[n]’);

subplot(223)

plot(2*[0:M-1]/M,abs(fft(v,M))); title(’upsampled signal v[m]’);

subplot(224)

plot(2*[0:M-1]/M,abs(fft(y,M))); title(’interpolated signal y[m]’);

% plot time domain

figure(2)

n1_x = 500; n2_x = 510;

m1_y = 3*(n1_x-1)+1 + (N_h-1)/2; m2_y = 3*(n2_x-1)+1 + (N_h-1)/2;

plot([n1_x:1/3:n2_x],y([m1_y:m2_y]),’ro’);

hold on; stem([n1_x:n2_x],x([n1_x:n2_x]),’x’); hold off;

title(’standard interpolation: original (x) and interpolated (o) values’);
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