
ECE-700 Digital Signal Processing Winter 2007

Homework #1 Jan. 10, 2007

HOMEWORK SOLUTIONS #1

1. Since periodic with period T , can represent p(t) =
∑

∞

n=−∞
δ(t − nT ) using a Fourier series with

coefficients P [k]:

p(t) =

∞
∑

k=−∞

P [k]ejk 2π

T
t

where

P [k] :=
1

T

∫ T/2

−T/2

p(t)e−jk 2π

T
tdt

=
1

T

∫ T/2

−T/2

∞
∑

n=−∞

δ(t − nT )e−jk 2π

T
tdt

=

∞
∑

n=−∞

1

T

∫ T/2

−T/2

δ(t − nT )e−jk 2π

T
tdt

=
1

T

∫ T/2

−T/2

δ(t)e−jk 2π

T
tdt

=
1

T

due to the sifting property of the Dirac delta. Thus we have

p(t) =
1

T

∞
∑

k=−∞

ejk 2π

T
t

2. First note that

yc(t) =

∞
∑

n=−∞

x[n]
sin(π(2000t − n))

π(2000t− n)
=

∞
∑

n=−∞

x[n]
sin( π

T (t − nT ))
π
T (t − nT )

∣

∣

∣

∣

1

T
=2000

where
sin( π

T
t)

π

T
t is the impulse response of an ideal reconstruction filter for a rate- 1

T sampled signal.

Thus, if xc(t) was bandlimited to 1
2T =1 kHz, we would have yc(t) = xc(t). So all components of

xc(t) bandlimited to 1 kHz will appear un-aliased in yc(t), while all higher-frequency components

of xc(t) will be aliased to the range between -1 kHz and 1 kHz (due to the linearity of the DTFT).

(a) The cosines at 300 Hz and 500 Hz pass appear un-aliased at the output, whereas the higher

frequencies are aliased:

cos(2π · 1200 · n
2000 ) = cos(2π · (−800) · n

2000 )

cos(2π · 1700 · n
2000 ) = cos(2π · (−300) · n

2000 )

cos(2π · 5500 · n
2000 ) = cos(2π · (−500) · n

2000 )

Then, since cos(t) = cos(−t),

yc(t) = 2 cos(2π · 300 · t) + 2 cos(2π · 500 · t) + cos(2π · 800 · t)

P. Schniter, 2007 1



(b) Repeating above with cosine replaced by sine,

sin(2π · 1200 · n
2000 ) = sin(2π · (−800) · n

2000 )

sin(2π · 1700 · n
2000 ) = sin(2π · (−300) · n

2000 )

sin(2π · 5500 · n
2000 ) = sin(2π · (−500) · n

2000 )

Then, using sin(t) = − sin(−t), we find that the signal components at ±300 and ±500 Hz

cancel, giving

yc(t) = − sin(2π · 800 · t)

(c) Repeating with complex exponentials,

ej2π·1200· n

2000 = ej2π·(−800)· n

2000

ej2π·1700· n

2000 = ej2π·(−300)· n

2000

ej2π·5500· n

2000 = ej2π·(−500)· n

2000

so that

yc(t) = ej2π·300·t + ej2π·(−300)·t + ej2π·500·t + ej2π·(−500)·t + ej2π·(−800)·t

= 2 cos(2π · 300 · t) + 2 cos(2π · 500 · t) + e−j2π·800·t

3. (a) From the sampling theorem, y1[n] = yc(nT ) implies

Y1(e
jω) =

1

T

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T

)

)

Since we require band-limiting to 1
2T to guarantee no aliasing, there may be aliasing in Y1(e

jω).

(b) If we define ỹc(t) = yc(t + T/2), then y2[n] = yc(nT + T/2) = ỹc(nT ), and the sampling

theorem implies

Y2(e
jω) =

1

T

∞
∑

k=−∞

Ỹc

(

j
(ω − 2πk

T

)

)

where Ỹc denotes the CTFT of ỹc(t). Since yc and ỹc are related by a time shift of T/2, their

CTFTs are related as follows:

Ỹc(jΩ) =

∫

∞

−∞

yc(t + T/2)e−jΩtdt

=

∫

∞

−∞

yc(τ)e−jΩ(τ−T/2)dτ

= ejΩT/2

∫

∞

−∞

yc(τ)e−jΩτ dτ

= ejΩT/2Yc(jΩ)

Thus

Y2(e
jω) =

1

T

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T

)

)

ej( ω−2πk

T
) T

2

= ej ω

2

1

T

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T

)

)

(−1)k

Y2(e
jω) may contain aliasing for the same reasons as in part (a).
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(c) Combining the results of the previous two parts,

Y3(e
jω/2) = Y1(e

jω) + e−j ω

2 Y2(e
jω)

=
1

T

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T

)

)

+
1

T

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T

)

)

(−1)k

=
2

T

∑

k even

Yc

(

j
(ω − 2πk

T

)

)

since the odd-indexed elements cancel. Continuing,

Y3(e
jω/2) =

2

T

∞
∑

k=−∞

Yc

(

j
(ω − 4πk

T

)

)

=
1

T/2

∞
∑

k=−∞

Yc

(

j
(ω/2 − 2πk

T/2

)

)

(d) Replacing ω/2 with ω we get

Y3(e
jω) =

1

T/2

∞
∑

k=−∞

Yc

(

j
(ω − 2πk

T/2

)

)

Note that Y3(e
jω) is the DTFT that would have been obtained if we would have sampled yc(t)

at rate 2/T . In other words, if y3[m] is the inverse-DTFT of Y3(e
jω), then y3[m] = yc(mT/2).

Since, for 2/T -rate sampling, a signal bandlimited to 1/T Hz will not alias, we conclude that

there is no aliasing present in y3[m].

As will become clear when we are more familiar with multirate DSP, y3[m] results when the

sequences y1[n] and y2[n] are interleaved.

4. (a) Define x̃c(t) = xc(t− τT ). Then say x̃[n] = x̃c(nT ) = xc(nT − τT ). We want to show, in the

end, that y[n] = x̃[n]. We know from the sampling theorem that

X̃(ejω) =
1

T

∞
∑

k=−∞

X̃c

(

j
(ω − 2πk

T

)

)

We also know from the CTFT time shift property (or as shown in the solution to 3(b)) that

X̃c(jΩ) = e−jΩτT Xc(jΩ)

so that

X̃(ejω) =
1

T

∞
∑

k=−∞

Xc

(

j
(ω − 2πk

T

)

)

e−j( ω−2πk

T
)τT

=
1

T

∞
∑

k=−∞

Xc

(

j
(ω − 2πk

T

)

)

e−j(ω−2πk)τ

As a DTFT, recall that X̃(ejω) is completely specified by its values in the range ω ∈ [−π, π),

so let’s examine X̃(ejω) over this range. Inferring from the problem statement that xc(t)

must have been bandlimited to π
T rad/s, we can claim

X̃(ejω) =
1

T
Xc

(

j
ω

T

)

e−jωτ , |ω| < π
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Band-limiting also implies that

X(ejω) =
1

T
Xc

(

j
ω

T

)

, |ω| < π

so that

X̃(ejω) = X(ejω)e−jωτ , |ω| < π

Now consider y[n]. From the convolution property of the DTFT,

Y (ejω) = X(ejω)H(ejω)

= X(ejω)e−jωτ , |ω| < π

where the second equation follows from the problem statement. Since Y (ejω) = X̃(ejω) for all

|ω| < π, the same must hold true for all ω, from which it follows that y[n] = x̃[n] = x
(

(n−τ)T
)

.

Basically, the filter H(z) imposes a possibly non-integer delay of τ samples!

(b) From the inverse DTFT,

h[n] =
1

2π

∫ π

−π

H(ejω)ejωndω

=
1

2π

∫ π

−π

ejω(n−τ)dω

=
1

2π

1

j(n − τ)

[

ejπ(n−τ) − e−jπ(n−τ)
]

=
1

π(n − τ)
sin(π(n − τ))

= sinc(π(n − τ))

Note that h[n] has a doubly infinite number of coefficients. Therefore, it is impossible to

implement exactly. However, we can approximate it using short FIR filters, as shown below.

(c) We see by the plot below that the filter closely approximates the desired group delay over the

frequency range ω ∈ [0, 0.6 π
2T ). Thus, we expect the filter to perform well on lowpass signals.
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Figure 1: Group delay of length-11 windowed approximation to h[n].
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