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1 Transforms

Using xc(t) to denote a continuous-time signal at time t ∈ R,

• Laplace Transform:

Xc(s) =

∫ ∞

−∞

xc(t)e
−stdt, s ∈ C

• Continuous-Time Fourier Transform (CTFT):

Xc(jΩ) =

∫ ∞

−∞

xc(t)e
−jΩtdt, Ω ∈ R

xc(t) =
1

2π

∫ ∞

−∞

Xc(jΩ)ejΩtdΩ, t ∈ R

Note that:

♣ Xc(jΩ) is the Laplace transform evaluated at s = jΩ.

♣ xc(t) ∈ R implies Xc(jΩ) = X∗
c (−jΩ), i.e., “conjugate symmetry”.

♣ xc(t) is “bandlimited” to Ω0 if Xc(jΩ) = 0 for all |Ω| > Ω0.

Using x[n] to denote a discrete-time signal at index n ∈ Z,

• z-transform:

X(z) =

∞∑

n=−∞

x[n]z−n, z ∈ C

Denoting a transform pair by x[n] ↔ X(z), some useful properties are

x[−n] ↔ X(z−1)
(−1)nx[n] ↔ X(−z)
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• Discrete-Time Fourier Transform (DTFT):

X(ejω) =

∞∑

n=−∞

x[n]e−jωn, ω ∈ R

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω, n ∈ Z

Note that:

♣ X(ejω) is the z-transform evaluated on the unit circle in C-plane: z = ejω.

♣ X(ejω) is 2π-periodic in ω.

♣ x[n] ∈ R implies X(ejω) = X∗(e−jω), i.e., “conjugate symmetry”.

Other DTFT properties are:

x[−n] ↔ X(e−jω)

x∗[n] ↔ X∗(e−jω)

x[n−ℓ] ↔ X(ejω)e−jωℓ

x[n]ejω0n ↔ X(ej(ω−ω0))

x[n]y[n] ↔ 1
2π

∫ π

−π
X(ejθ)Y (ej(ω−θ))dθ

x[n] ∗ y[n] ↔ X(ejω)Y (ejω)
∑

n |x[n]|2 ↔ 1
2π

∫ π

−π
|X(ejω)|2dω

where “∗” denotes linear convolution: x[n] ∗ y[n] =
∑∞

m=−∞ x[m] y[n − m].

2 Uniform Sampling

Say that x[n] is sampled from xc(t) with uniform sampling interval T :

x[n] = xc(nT ) , n ∈ Z

Let us define the continuous-time “impulse train”

p(t) =
∞∑

n=−∞

δ(t − nT )

where δ(t) denotes the Dirac delta function, defined by the properties
∫∞

−∞
δ(t)dt = 1 “unit area”

∫∞

−∞
f(t)δ(t − τ)dt = f(τ) “sifting property”

Using Fourier series, it can be shown that

p(t) =
1

T

∞∑

k=−∞

ej 2π

T
kt
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Figure 1: Signals used in sampling theorem.

Multiplying xc(t) by the impulse train yields the “continuous-time sampled signal”
xs(t) which will help us to derive the sampling theorem. (See Fig. 1.)

xs(t) = xc(t)
∞∑

n=−∞

δ(t − nT )

= xc(t)
1

T

∞∑

k=−∞

ej 2π

T
kt

Taking the CTFT of xs(t),

Xs(jΩ) =

∫ ∞

−∞

(

xc(t)
1

T

∞∑

k=−∞

ej 2π

T
kt

)

e−jΩtdt

=
1

T

∞∑

k=−∞

∫ ∞

−∞

xc(t)e
−j(Ω− 2π

T
k)tdt

=
1

T

∞∑

k=−∞

Xc

(
j(Ω − 2π

T
k)
)

(1)

Notice that Xs(jΩ) is a summation of scaled and shifted copies of Xc(jΩ). When Xc(jΩ)
is bandlimited to π

T
rad/s the spectral copies do not overlap, and we say there is no
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“aliasing.” Aliasing may result when Xc(jΩ) is not bandlimited to π
T
. (See Fig. 2.) The

frequency π
T

rad/s, i.e., 1
2T

Hz, is often called the “Nyquist frequency.”
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Ω
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Figure 2: Example of no aliasing (left) and aliasing (right) in Xs(jΩ).

We now investigate the relationship between the CTFT and the DTFT:

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

=

∞∑

n=−∞

xc(nT )e−jωn

=

∞∑

n=−∞

(∫ ∞

−∞

xc(t)δ(t − nT )dt

)

e−jωn

=
∞∑

n=−∞

∫ ∞

−∞

xc(t)δ(t − nT )e−jωn

︸ ︷︷ ︸

nonzero iff n = t/T .

dt

=
∞∑

n=−∞

∫ ∞

−∞

xc(t)δ(t − nT )e−jω t

T dt

=

∫ ∞

−∞

xc(t)
∞∑

n=−∞

δ(t − nT )

︸ ︷︷ ︸

xs(t)

e−j ω

T
tdt

= Xs

(

j
ω

T

)

(2)
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Plugging (1) into (2) yields

X(ejω) =
1

T

∞∑

k=−∞

Xc

(

j
(ω − 2πk

T

))

Notice that the DTFT of the sampled signal x[n] is a summation of scaled, stretched, and
shifted copies of the CTFT of the continuous signal xc(t). As implied by (2), the DTFT
may show evidence of aliasing when xc(t) is not bandlimited to the Nyquist frequency.
(See Fig. 3.)
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. . . . . .
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Figure 3: Example of no aliasing (left) and aliasing (right) in X(ejω).

3 Reconstruction

Fig. 4 illustrates the theoretical procedure by which a Nyquist-bandlimited xc(t) can be
perfectly reconstructed from its sampled representation x[n]. Essentially, it is a rever-
sal of the sampling process. First, the discrete-time sequence x[n] is convolved with a
continuous-time Dirac delta to obtain xs(t).

xs(t) =

∞∑

n=−∞

x[n]δ(t − nT )

As we know, Xs(jΩ) contains unwanted spectral copies, or images, and is scaled by a
factor of 1/T relative to Xc(jΩ). Thus, the second step in the reconstruction procedure is
to remove these images and scale by T . This can be accomplished by a “brick-wall” analog
lowpass filter with cutoff at π

T
and DC gain of T . The time-domain impulse response of

this filter is given by

hb(t) =
1

2π

∫ ∞

−∞

Hb(jΩ)ejΩtdΩ =
1

2π

∫ π/T

−π/T

TejΩtdΩ =
sin(πt/T )

πt/T
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See Fig. 5 for an illustration. Thus, the reconstructed signal can be written

xc(t) = xs(t) ∗ hb(t) =
∞∑

n=−∞

x[n]
sin
(

π
T
(t − nT )

)

π
T
(t − nT )

(3)

x[n] xc(t)δ(t) hb(t) =
sin(πt/T )

πt/T

x[n]

xs(t)

xs(t) xc(t)

n t t

ω ΩΩ

|X(ejω)| |Xs(jΩ)| |Xc(jΩ)|

π 0 00−π π
T

π
T

− π
T

− π
T

11/T 1/T

Figure 4: Ideal reconstruction of Nyquist-bandlimited signal.

hb(t) =
sin(πt/T )

πt/T

t
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T

−T−2T
π
T 00− π

T

Hb(jΩ)

Ω

Figure 5: Brick-wall analog reconstruction lowpass filter.
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In practice, it is not possible to generate Dirac deltas for the creation of xs(t). So,
instead of convolving with δ(t), we might convolve with a rectangular pulse of width T ,
known as a zero-order hold (ZOH) function and denoted by hz(t). This yields xz(t):

xz(t) =

∞∑

n=−∞

x[n]hz(t − nT )

Unwanted spectral copies in Xz(jΩ) can be removed by a final stage of lowpass filtering.
The two-step procedure is illustrated in Fig. 6. To be consistent with the Dirac delta, we
assume a ZOH function with unit area, requiring that the analog reconstruction lowpass
filter has DC gain T .

x[n] xc(t)
ZOH

DAC
hz(t)

reconstruction

filter
hr(t)

“droop”

x[n]

xz(t)

xz(t) xc(t)

n t t

|X(ejω)| |Xz(jΩ)| |Xc(jΩ)|

4π2π 00 0−2π−4π 4π
T

4π
T

2π
T

2π
T

−2π
T

−2π
T

−4π
T

−4π
T

11/T 1/T

Figure 6: ZOH reconstruction of Nyquist-bandlimited signal.

Unlike convolution with δ(t), convolution with the ZOH function hz(t) introduces pass-
band “droop” and out-of-band attenuation. This results from the fact that the frequency
response magnitude of the ZOH function is not constant in Ω:

Hz(jΩ) =

∫ ∞

−∞

hz(t)e
−jΩtdt =

∫ T

0

1

T
e−jΩtdt =

sin(ΩT/2)

ΩT/2
e−jΩT/2

(See Fig. 7 for an illustration.) Thus, for perfect reconstruction, the analog reconstruction
filter Hr(jΩ) must invert the ZOH response Hz(jΩ) over the passband [− π

T
, π

T
). The left

side of Fig. 8 shows the ideal |Hr(jΩ)|.
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Figure 7: ZOH function.

It is difficult to build analog reconstruction filters with sharp cutoff. Instead, one hopes
that the desired signal is bandlimited to less than the Nyquist frequency (as in Fig. 6),
so that there is an absence of unwanted spectral energy in a region around ±π/T . In
this case, the analog reconstruction filter Hr(jΩ) may be designed with a wider transition
band, such as on the right side of Fig. 8.

π
T

π
T 00

TT

− π
T

− π
T

|Hr(jΩ)||Hr(jΩ)|

ΩΩ

Figure 8: Ideal (left) and practical (right) reconstruction filters for ZOH.
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4 Discrete Fourier Transform

N -point Discrete-Fourier Transform (DFT):

X[k] =
N−1∑

n=0

x[n]e−j 2π

N
kn, k = 0 . . . N − 1

x[n] =
1

N

N−1∑

k=0

X[k]ej 2π

N
kn, n = 0 . . .N − 1

Note that:

♣ X[k] is the DTFT evaluated at ω = 2π
N

k for k = 0 . . . N − 1.

♣ Zero-padding x[n] to M samples (where M > N) prior to an M-pt DFT yields an
M-point uniformly sampled version of the DTFT:

X(ej 2π

M
k) =

N−1∑

n=0

x[n]e−j 2π

M
kn =

M−1∑

n=0

xzp[n]e−j 2π

M
kn = Xzp[k], k = 0 . . .M−1

This can be used to compute a densely sampled DTFT of any N -pt sequence.

♣ An N -pt DFT can be interpolated to reconstruct the DTFT of an N -pt sequence.

X(ejω) =

N−1∑

n=0

x[n]e−jωn

=
N−1∑

n=0

1

N

N−1∑

k=0

X[k]e−j 2π

N
kne−jωn

=

N−1∑

k=0

X[k]
1

N

N−1∑

n=0

e−j(ω− 2π

N
k)n

=
N−1∑

k=0

X[k]
1

N

sin
(

ωN−2πk
2

)

sin
(

ωN−2πk
2N

) e−j(ω− 2π

N
k)N−1

2

0

1

2π
N

4π
N 2π

∣
∣
∣
∣

1
N

sin
(

ωN

2

)

sin
(

ω

2

)

∣
∣
∣
∣

Figure 9: Dirichlet sinc
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♣ The DFT has a convenient matrix representation.








X[0]
X[1]

...
X[N−1]








︸ ︷︷ ︸

X

=








e−j 2π

N
0 e−j 2π

N
0 e−j 2π

N
0 e−j 2π

N
0 . . .

e−j 2π

N
0 e−j 2π

N
1 e−j 2π

N
2 e−j 2π

N
3 . . .

e−j 2π

N
0 e−j 2π

N
2 e−j 2π

N
4 e−j 2π

N
6 . . .

...
...

...
...

. . .








︸ ︷︷ ︸

W








x[0]
x[1]

...
x[N−1]








︸ ︷︷ ︸

x

where W has the following properties:

♠ [W]k,n = e−j 2π

N
kn

♠ W is symmetric, i.e., W = Wt.

♠
1√
N
W is unitary, i.e., ( 1√

N
W)( 1√

N
W)H = ( 1√

N
W)H( 1√

N
W) = I.

♠
1
N
W∗ = W−1, where W−1 is called the “IDFT matrix”.

♠ W is a “Vandermonde matrix”, i.e., the nth column of W is formed by raising
e−j 2π

N
n to the powers k = 0, 1, . . . , N−1. The Vandermonde property implies

that W is full rank.

♣ For N = 2m with m ∈ N, the FFT algorithm can be used to compute the DFT
using approximately N

2
log2 N , rather than N2, operations.

N N
2

log2 N N2 savings factor
16 32 256 8
64 192 4096 21.3
256 1024 65536 64
1024 5120 1048576 204.8

5 Miscellaneous

Linear Phase: A “linear-phase” filter H(z) has a phase response that is linear in frequency.
Specifically, the DTFT of a linear phase filter can be written as

H(ejω) = e−jωdH̃(ejω),

{

d ∈ R

H̃(ejω) ∈ R

When d = 0, we refer to the filter as “zero-phase.”
It can be shown that a filter is zero-phase iff its impulse response is conjugate sym-

metric around the origin, i.e., h[m] = h∗[−m] ∀m ∈ N. (See the proof below.) Since
symmetric length-N causal filters exhibit coefficient symmetry around the index N−1

2
, the

same arguments can be used to show that such filters are linear phase with d = N−1
2

.
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Proof. If H(ejω) is real-valued, then following must hold ∀ω:

0 = Im

{
∞∑

n=−∞

h[n]e−jnω

}

= Im

{
∞∑

n=−∞

(
hr[n] + jhi[n]

)(
cos(nω) − j sin(nω)

)

}

=
∞∑

n=−∞

hi[n] cos(nω) − hr[n] sin(nω)

= hi[0] +
∞∑

n=1

(
hi[n] + hi[−n]

)
cos(nω) −

(
hr[n] − hr[−n]

)
sin(nω)

If f(ω) = 0 ∀ω, then

0 = lim
ω0→∞

2

ω0

∫ ω0

−ω0

f(ω) sin(ωm)dω ∀m ∈ N

Using f(ω) = Im{H(ejω)}, we find that

0 = hr[m] − hr[−m] ∀m ∈ N.

Similarly, if f(ω) = 0 ∀ω, then

0 = lim
ω0→∞

2

ω0

∫ ω0

−ω0

f(ω) cos(ωm)dω ∀m ∈ N

Using f(ω) = Im{H(ejω)}, we find that

0 = hi[m] + hi[−m] ∀m ∈ Z
+.

Putting the real/imaginary coefficient requirements together, we have

h[m] = h∗[−m] ∀m ∈ Z
+.

Thus we have shown that a real-valued DTFT implies conjugate symmetric coefficients (with
symmetry around the origin).

To prove the other direction, assume h[m] = h∗[−m] ∀m ∈ Z+. Then

H(ejω) =

∞∑

n=−∞

h[n]e−jnω

= h[0] +

∞∑

n=1

h[n]e−jnω + h[−n]ejnω

= h[0] +

∞∑

n=1

(h[n]e−jnω) + (h[n]e−jnω)∗

= h[0] + 2Re

{
∞∑

n=1

h[n]e−jnω

}

∈ R ∀ω

since the conjugate symmetry implies that h[0] ∈ R. Thus we have shown that conjugate
symmetric coefficients (with symmetry around the origin) imply a real-valued DTFT.
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Group-Delay Response: The group-delay response of a discrete-time linear system
H(z) is defined as the negative derivative of the phase response of the DTFT H(ejw). In
other words, if we write

H(ejω) = |H(ejω)|ejφ(ω)

where φ(ω) denotes the phase response, then the group-delay response g(ω) is

g(ω) = −
∂φ(ω)

∂ω

Functionally, g(ω) describes the delay (in samples) imposed by H(z) on input signal
components with frequency ω.

Recall that the DTFT of a symmetric causal length-N filter can be written in terms
of real-valued H̃(ejω) as

H(ejω) = H̃(ejω)e−j N−1

2
ω

from which it is evident that |H(ejω)| = |H̃(ejω)| = sgn{H̃(ejω)} · H̃(ejω). Thus

H(ejω) = |H(ejω)| · sgn{H̃(ejω)}e−j N−1

2
ω

which implies that

φ(ω) =

{

−N−1
2

ω ω s.t. sgn{H̃(ejω)} = 1

−N−1
2

ω + π ω s.t. sgn{H̃(ejω)} = −1

g(ω) =

{
N−1

2
ω s.t. H(ejω) 6= 0

undefined ω s.t. H(ejω) = 0

Note that this group-delay response is constant with respect to frequency, implying that
all input components not completely attenuated by the system will be delayed by the
same amount.
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