
ECE-700 Digital Signal Processing Winter 2007

Homework #5 Jan. 31, 2007

HOMEWORK ASSIGNMENT #5

Due Wed. Feb. 7, 2007 (in class)

1. Polyphase/DFT Filterbank:

In this problem, you will derive the equivalence between the uniformly modulated filterbank in

Fig. 1 and its polyphase/DFT implementation in Fig. 2. Assume that the impulse response lengths

of H̄(z) and H(z) both equal N . The impulse responses of P̄ℓ(z) and Pℓ(z) are related to those of

H̄(z) and H(z) via p̄ℓ[m] = h̄[mM + ℓ] and pℓ[m] = h[mM + ℓ].

(a) Show the equivalence between the synthesis banks in Fig. 1 and Fig. 2. (Hint : reverse the

procedure used in the lecture to study the analysis bank.)

(b) Implement the filterbank pairs of Fig. 1 and Fig. 2 in Matlab using M = 8 branches, master

filter length N = 160, and input created via x = randn(1,300). Using the following impulse

response for both H̄(z) and H(z).

h = firls(N,[0,.8/M,1.2/M,1],[sqrt(M),sqrt(M),0,0]); h=h(1:end-1);

Note that the group delay of each filter is exactly N/2 samples. Plot the output from both

filters, the delayed input x̄[n − N ], and the reconstruction error x̄[n − N ] − x[n], as done in

Fig. 3.
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Figure 1: M -band uniformly-modulated analysis/synthesis filterbanks.
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Figure 2: Polyphase/DFT implementation of M -band uniformly modulated analysis/synthesis filterbanks.
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Figure 3: Matlab filterbank simulation outputs.
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2. In this problem you will design a two-channel orthogonal perfect-reconstruction FIR filterbank.

This involves the design of a prototype filter H(z):

• Use a window (of your choice) to design the coefficients q[n] of length-15 halfband filter:

Q(z) =

7
∑

n=−7

q[n]z−n.

• Find the minimum value attained by the (real-valued) DTFT Q(ejω), denoted by −ǫ.

• Using q[n] and ǫ, create a raised halfband filter f [n] with non-negative real DTFT.

• Collect the roots of F (z) which have magnitude less than one, and form a new polynomial

H̃(z) using these roots. (There should be exactly 7 of them. Use roots, poly in Matlab.)

• Create H(z), a scaled version of H̃(z), so that H(z)H(z−1) + H(−z)H(−z−1) = 1. This is

easily done by ensuring that 2
∑

n h2[n] = 1 (motivated by Parseval’s theorem).
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Using the prototype-filter design procedure above,

(a) Plot the roots of F (z) and H(z) superimposed on the unit circle in the complex plane.

(b) Superimpose Q(ejω), F (ejω), and H2(ejω) on one plot. Also, show a zoomed view of the

stopband to ensure that F (ejω) > 0.

(c) Using H(z), design the filters H0(z), H1(z), G0(z) and G1(z). Plot the DTFT magnitudes of

the analysis filters, and show that they are “power complementary.”

(d) Create x[n] as a random sequence of length 200, and using the filters you designed generate

output y[n]. Plot an appropriately delayed version of x[n] on top of y[n] to verify the perfect

reconstruction property.

Examples below for a rectangular window: please use a different window for your homework!
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3. Now we repeat the previous problem for bi-orthogonal perfect-reconstruction filterbank design.

• Use the same length-15 halfband filter design procedure as in the previous problem, but make

sure to use a Hamming window.1

• From halfband F (z), we choose real-valued linear-phase H0(z) and H1(z) such that

F (z) = H0(z)H1(−z).

To do this, group the roots of F (z) into complex-conjugate and mirror-image quadruplets

(or real-valued mirror-image pairs). Regardless which groups you allocate to H0(z) versus

H1(−z), you will get real-valued linear-phase filters. Different allocations will, however, lead

to different filter responses. (Try different allocations to find the best one.)

• After root allocation, you will need to scale H0(z) and H1(z). I suggest to first pre-normalize

h0[n] and h1[n] such that
∑

n h2

0
[n] =

∑

n h2

1
[n] = 1, then to scale them equally to achieve

H0(z)H1(−z)− H0(−z)H1(z) = z−N .

• Generate the following plots:

(a) Root plot of F (z), H0(z), and H1(z), as in 2(a).

(b) DTFT magnitude plots of analysis filters h0[n] and h1[n], as well as “cross-complementary”

verification:
∣

∣H0(e
jω)H1(−ejω) − H0(−ejω)H1(e

jω)
∣

∣ = 1, similar to 2(c).

(c) Time-domain perfect reconstruction plot, as in 2(d).

1When you are finished, it is interesting (and easy) to see what happens for other windows too.
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