HOMEWORK ASSIGNMENT #3

Due Wed. Jan. 24, 2007 (in class)

1. Polyphase Interpolation Filter Design: We have seen in the lecture that there are two different approaches to the design of a polyphase filter bank. In the indirect method, we design the master filter $h[n]$ and then decimate it. In the direct method, the polyphase filters are designed to have (approximately) constant group-delay and magnitude response. These two methods can be compared by looking at the magnitude and group-delays of the resulting polyphase banks, or by examining the magnitude response of the corresponding master filters.

Assume interpolation factor $L = 15$, polyphase filter length $N = 11$ (i.e., master filter length LN), and input signal bandlimited to 0.8π radians.

- (a) What are the desired passbands and stopbands of $H(e^{j\omega})$ for the indirect method?
- (b) Using firls, design a length-LN linear-phase least-squares approximation to desired $h[n]$. Plot (i) the resulting DTFT magnitude response in dB, (ii) the polyphase filters' group delays, and (iii) the polyphase filters' DTFT magnitude responses in dB. Use a total of three plots.
- (c) Design an equiripple approximation to desired $h[n]$ via firm and give the same plots as (b).
- (d) Using the Hamming-window method of homework 1.4c, design a length-N approximation to each polyphase filter $h_p[n]$, then construct the corresponding $h[n]$ (by interleaving). Finally, give the same plots as (b).
- (e) Based on your plots, which do you expect to yield the best interpolation performance?
- 2. MATLAB Polyphase Interpolator:

- (a) Generate length-1000 input signal $x[n]$ bandlimited to 0.8 π radians, as in problem 2.5a.
- (b) Generate polyphase interpolated $y[m]$ using the structure above with $L = 15$ and the filters designed via the indirect least-squares approach of 3.1b. Demonstrate successful interpolation by plotting $x[n]$ for $n = [500 : 510]$ superimposed on the interpolates $y[m]$ (for the suitable range of m , as in 2.5d.
- (c) Repeat (b) for the indirect equiripple design of 3.1c.
- (d) Repeat (b) for the direct windowed design of 3.1d.
- (e) Is the interpolation performance consistent with your previous intuitions? What is going on?

Hint: For debugging, recall the equivalence between polyphase and standard interpolation.

- 3. Rational Polyphase Resampling: Say $x_c(t)$ bandlimited to 300 kHz has been sampled at 1.75 MHz, and we want to resample the resulting signal to a rate of 1.44 MHz. In other words, $x[n] = x_c(nT_1)$ and $y[m]=x_c(mT_2)$ for $1/T_1=1.75~\mathrm{MHz}$ and $1/T_2=1.44~\mathrm{MHz}.$
	- (a) Generate length-150 $x[n]$ by appropriate filtering of randn output.
	- (b) Describe the ideal master filter $|H(e^{j\omega})|$. Design a set of polyphase filters with 10 taps per filter (by a method of your choice) and plot the corresponding master filter's DTFT magnitude.
	- (c) Implement the rational polyphase resampler (shown below). Plot the input and output DTFT magnitudes, then generate a time-domain plot which superimposes samples of the input and output over the range $t \in [28\mu s, 34\mu s]$. See example plots below. To line up the waveforms, remember to shift the output trace left by the delay τ caused by the resampling structure. (Hint: To determine τ , think about the effect of master filter delay in the equivalent standard (non-polyphase) resampler. Also, make sure that your implementation does not introduce unwanted delay; it should produce $y[0] = h[0]x[0]$.)

$$
x[n] \longrightarrow x[n_m] \longrightarrow H_{p_m}(z) \longrightarrow y[m]
$$

at output index m use:
branch $p_m = \langle mM \rangle_L$
input index $n_m = \lfloor \frac{mM}{L} \rfloor$.

$$
y[m] = \sum_k h_{p_m}[k] x[n_m - k]
$$

4. Arbitrary-Rate Polyphase Resampling: Here we repeat the resampling task in Problem 3 using the arbitrary-rate resampler illustrated below. We keep the resampling ratio $Q = \frac{144}{175}$, but implement the resampler using an $L = 10$ interpolation bank (rather than 144).

$$
x[n] \longrightarrow x[n_m] \longrightarrow \boxed{H_{p_m}(z) \longrightarrow 1-\alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow \boxed{H_{p_m+1}(z) \longrightarrow \alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow \boxed{H_{p_m+1}(z) \longrightarrow \alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow \boxed{H_{p_m+1}(z) \longrightarrow \alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow \boxed{H_{p_m+1}(z) \longrightarrow \alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow \boxed{H_{p_m+1}(z) \longrightarrow \alpha_m} \longrightarrow y[m]
$$
\n
$$
x[n_m] \longrightarrow y[m] \longrightarrow y[m] \longrightarrow y[m]
$$
\n
$$
y[m] \longrightarrow (1-\alpha_m) \sum_{k} h_{p_m}[k] x[n_m-k]
$$
\n
$$
x[n_m-k]
$$
\n
$$
x[n_m-k]
$$
\n
$$
x[n_m-k]
$$

To implement H_{p_m+1} when $p_m = L-1$, we need the additional filter $H_L(z)$. This filter can be designed directly so that it approximates a group delay of $\frac{d-L}{L}$, or indirectly through decimation of a master filter with length $LN_p + 1$ (where N_p denotes polyphase filter length).

- (a) Generate $x[n]$ as in problem 3a.
- (b) Describe the ideal master filter $|H(e^{j\omega})|$. Design a set of polyphase filters with 10 taps per filter and plot the corresponding master filter's DTFT magnitude.
- (c) Implement the arbitrary-rate resampler. As in problem 3c, plot the input and output DTFT magnitudes, then generate a time-domain plot which superimposes samples of the input and output over the range $t \in [28\mu s, 34\mu s)$. (*Hint*: This requires only minor modification of your code from 3c. Do not attempt this until you are sure that your previous code works correctly!)