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1 Transform Coding

1.1 Background and Motivation

• In transform coding (TC), blocks of N input samples are transformed to N transform coefficients
which are then quantized and transmitted. At the decoder, an inverse transform is applied to the
quantized coefficients, yielding a reconstruction of the original waveform. By designing individual
quantizers in accordance with the statistics of their inputs, it is possible to allocate bits in a more
optimal manner, e.g., encoding the “more important” coefficients at a higher bit rate.
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Figure 1: N × N Transform Coder/Decoder with Scalar Quantization

• Orthogonal Transforms: From our perspective, an N×N “transform” will be any real-valued linear
operation taking N input samples to N output samples, or transform coefficients. This operation
can always be written in matrix form

y(m) = Tx(m), T ∈ R
N×N

where x(m) and y(m) are vectors representing N × 1 blocks of input/output elements:

x(m) =
(
x(mN), x(mN−1), . . . , x(mN−N +1)

)t

y(m) =
(
y(mN), y(mN−1), . . . , y(mN−N +1)

)t
.

Intuition comes from considering the transform’s basis vectors {tk} defined by the rows of the matrix

T =








— tt
0 —

— tt
1 —
...

– tt
N−1 –








since the coefficient yk = tt
kx can be thought of as the result of a “comparison” between the kth

basis vector and the input x. These comparisons are defined by the inner product <tk,x>= tt
kx

which has a geometrical interpretation involving the angle θk between vectors tk and x.

<tk,x> = cos(θk) ‖tk‖2 ‖x‖2.
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When the vectors {tk} are mutually orthogonal, i.e., tt
kt` = 0 for k 6= `, the transform coefficients

represent separate, unrelated features of the input. This property is convenient if the transform
coefficients are independently quantized, as is typical in TC schemes.

Example 1.1 (2×2 Transform Coder):
Say that stationary zero-mean Gaussian source x(m) has autocorrelation rx(0) = 1, rx(1) = ρ, and rx(k) = 0
for k > 1. For a bit rate of R bits per sample, uniformly-quantized PCM implies a mean-squared reconstruction
error of

σ2
r

˛
˛
PCM

=
∆2

12

˛
˛
˛
˛ ∆=2xmax/L

L=2R

=
1

3

x2
max

σ2
x

| {z }

γx

σ2
x2−2R = γxσ2

x2−2R.

For transform coding, say we choose linear transform

T =

„
tt
0

tt
1

«

=
1√
2

„
1 1
1 −1

«

Setting x(m) =
`
x(2m) x(2m − 1)

´t
and y(m) = Tx(m), we find that the transformed coefficients have

variance

σ2
y0

= E{|tt
0x(m)|2} =

1

2
E

˘
|x(2m) + x(2m − 1)|2

¯
=

1

2

`
2rx(0) + 2rx(1)

´
= 1 + ρ

σ2
y1

= E{|tt
1x(m)|2} =

1

2
E

˘
|x(2m) − x(2m − 1)|2

¯
=

1

2

`
2rx(0) − 2rx(1)

´
= 1 − ρ

and using uniformly-quantized PCM on each coefficient we get mean-squared reconstruction errors

σ2
q0 = (1 + ρ)γx2−2R0

σ2
q1 = (1 − ρ)γx2−2R1 .

We use the same quantizer performance factor γx as before since linear operations preserve Gaussianity.

For orthogonal matrices T, i.e., T−1 = Tt, we can show that the mean-squared reconstruction error σ2
r equals

the mean-squared quantization error:

σ2
r :=

1

N

N−1X

k=0

E
˘
(x̃(Nm − k) − x(Nm − k))2

¯
(here N = 2)

=
1

N
E

˘
‖x̃(m) − x(m)‖2¯

=
1

N
E

˘
‖T−1ỹ(m) − x(m)‖2¯

=
1

N
E

˘
‖T−1 (y(m) + q(m)) − x(m)‖2

¯

=
1

N
E

˘
‖T−1Tx(m) + T−1q(m) − x(m)‖2¯

=
1

N
E

˘
‖T−1q(m)‖2

¯

=
1

N
E

˘
qt(m) (T−1)tT−1

| {z }

I

q(m)
¯

=
1

N
E

˘
‖q(m)‖2¯

=
1

N

N−1X

k=0

σ2
qk

.

Since our 2×2 matrix is indeed orthogonal, we have mean-squared reconstruction error

σ2
r

˛
˛
TC

=
1

2

“

(1 + ρ)γx2−2R0 + (1 − ρ)γx2−2R1

”
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at bit rate of R0 + R1 bits per two samples. Comparing TC to PCM at equal bit rates (i.e. R0 + R1 = 2R),

σ2
r

˛
˛
TC

σ2
r

˛
˛
PCM

=
1

2

(1 + ρ)γx2−2R0 + (1 − ρ)γx2−2(2R−R0)

γx2−2R
= (1 + ρ)22(R−R0)−1 + (1 − ρ)22(R0−R)−1.

Fig. 2 shows that (i) allocating a higher bit rate to the quantizer with stronger input signal can reduce the
average reconstruction error relative to PCM, and (ii) the gain over PCM is higher when the input signal exhibits
stronger correlation ρ. Also note that when R0 = R1 = R, there is no gain over PCM—a verification of the fact
that σ2

r = σ2
q when T is orthogonal.
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Figure 2: Ratio of TC to PCM mean-squared reconstruction errors versus bit rate R0 for two values of ρ.

1.2 Optimal Bit Allocation

• Motivating Question: Assuming that T is an N×N orthogonal matrix, what is the MSE-optimal
bitrate allocation strategy assuming independent uniform quantization of the transform outputs?
In other words, what {R`} minimize average reconstruction error for fixed average rate 1

N

∑

` R`?

• Say that the kth element of the transformed output vector y(n) has variance {σ2
yk
}. With uniform

quantization, Example 1.1 showed that the kth quantizer error power is

σ2
qk

= γyk
σ2

yk
2−2Rk , (1)

where Rk is the bit rate allocated to the kth quantizer output and where γyk
depends on the

distribution of yk. From this point on we make the simplifying assumption that γyk
is independent

of k. As shown in Example 1.1, orthogonal matrices imply that the mean squared reconstruction
error equals the mean squared quantization error, so that

σ2
r =

1

N

N−1∑

k=0

σ2
qk

=
γy

N

N−1∑

k=0

σ2
yk

2−2Rk .

Thus we have the constrained optimization problem

min
{Rk}

N−1∑

k=0

σ2
yk

2−2Rk s.t. R =
1

N

N−1∑

k=0

Rk.
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Using the Lagrange technique, we first set

∂

∂R`

(
∑

k

σ2
yk

2−2Rk − λ
1

N

∑

k

Rk

)

= 0 ∀ `.

Since 2−2Rk = (eln 2)−2Rk = e−2Rk ln 2, the zero derivative implies

0 = − 2 ln 2 · 2−2R` · σ2
y`

− λ

N
⇒ R` = − 1

2
log2

(
λ

−2Nσ2
y`

ln 2

)

∀`. (2)

Hence

R =
1

N

∑

k

Rk = − 1

2N

∑

k

log2

(
λ

−2Nσ2
yk

ln 2

)

= − 1

2
log2

(
λ

−2N ln 2

)

+
1

2N

∑

k

log2 σ2
yk

so that

−1

2
log2

(
λ

−2N ln 2

)

= R − 1

2
log2

(
∏

k

σ2
yk

)1/N

.

Rewriting (2) and plugging in the expression above,

R` = −1

2
log2

(
λ

−2N ln 2

)

+
1

2
log2 σ2

y`

= R − 1

2
log2

(
∏

k

σ2
yk

)1/N

+
1

2
log2 σ2

y`

= R +
1

2
log2






σ2
y`

(
∏N−1

k=0 σ2
yk

)1/N




 . (3)

• The optimal bitrate allocation expression (3) is meaningful only when R` ≥ 0, and practical only
for integer numbers of quantization levels 2−2R` (or practical values of R` for a particular coding
scheme). Practical strategies typically

– set R` = 0 to when (3) suggests that the optimal R` is negative,

– round positive R` to practical values, and

– iteratively re-optimize {R`} using these rules until all R` have practical values (as in the
homework).

• Plugging (3) into (1), we find that optimal bit allocation implies

σ2
q`

= γy2−2R

(
N−1∏

k=0

σ2
yk

)1/N

∀ `,

which means that, with optimal bit allocation, each coefficient contributes equally to reconstruction
error. (Recall a similar property of the Lloyd-Max quantizer.)

1.3 Gain Over PCM

• With an orthogonal transform and the optimal bit allocation (3), the total reconstruction error
equals

σ2
r

∣
∣
TC

=
1

N

N−1∑

`=0

σ2
q`

= γy2−2R

(
N−1∏

k=0

σ2
yk

)1/N

. (4)
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We can compare to uniformly quantized PCM, where σ2
r

∣
∣
PCM

= γxσ2
x2−2R. Since an orthogonal

transform implies

σ2
x =

1

N

N−1∑

k=0

σ2
yk

,

we have the following gain over PCM:

GTC =
σ2

r

∣
∣
PCM

σ2
r

∣
∣
TC

=
γx

γy

1
N

∑N−1
k=0 σ2

yk

(
∏N−1

k=0 σ2
yk

)1/N
.

Note that the gain is proportional to the ratio between arithmetic and geometric means of the
transform coefficient variances. (Note similarities to the spectral flatness measure.)

The factor γy/γx accounts for changes in distribution which affect uniform-quantizer efficiency. For
example, if T caused uniformly distributed x to become Gaussian distributed yk, γy/γx would
contribute a 7 dB loss in TC-to-PCM performance. If, on the other hand, x was Gaussian, then yk

would also be Gaussian and γy/γx = 1.

1.4 Optimal Orthogonal Transform

• Ignoring the effect of transform choice on uniform-quantizer efficiency γy, (4) suggests that TC
reconstruction error can be minimized by choosing the orthogonal transform T that minimizes the
product of coefficient variances. (Recall that orthogonal transforms preserve the arithmetic average
of coefficient variances.)

Aside 1.1 (Eigen-Analysis of Autocorrelation Matrices):
Say that R is the N×N autocorrelation matrix of a real-valued, wide-sense stationary, discrete time stochastic
process. The following properties are often useful:

1. R is symmetric and Toeplitz. (A symmetric matrix obeys R = Rt, while a Toeplitz matrix has equal
elements on all diagonals.)

2. R is positive semidefinite or PSD. (PSD means that xtRx ≥ 0 for any real-valued x.)

3. R has an eigen-decomposition
R = VΛVt,

where V is an orthogonal matrix (VtV = I) whose columns are eigenvectors {vi} of R:

V = (v0 v1 · · · vN−1),

and Λ is a diagonal matrix whose elements are the eigenvalues {λi} of R:

Λ = diag(λ0 λ1 · · · λN−1).

4. The eigenvectors {λi} of R are real-valued and non-negative.

5. The product of the eigenvectors equals the determinant (
QN−1

k=0 λk = |R|) and the sum of the eigenvalues

equals the trace (
PN−1

k=0 λk =
P

k[R]k,k).

• The KLT: Using the outer product,

y(m)yt(m) =

0

B
B
B
@

y2
0(m) y0(m)y1(m) · · · y0(m)yN−1(m)

y1(m)y0(m) y2
1(m) · · · y1(m)yN−1(m)

...
...

. . .
...

yN−1(m)y0(m) yN−1(m)y1(m) · · · y2
N−1(m)

1

C
C
C
A
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Using
[
A
]

k,k
to denote the kth diagonal element of a matrix A, matrix theory implies

N−1∏

k=0

σ2
yk

=

N−1∏

k=0

[
E{y(m)yt(m)}

]

k,k

≥
∣
∣E{y(m)yt(m)}

∣
∣

=
∣
∣TE{x(m)xt(m)}Tt

∣
∣

=
∣
∣Tt ·T
︸ ︷︷ ︸

I

E{x(m)xt(m)}
︸ ︷︷ ︸

Rx

Tt ·T
︸ ︷︷ ︸

I

∣
∣ since |TtA| = |A| = |AT| for orthogonal T

=

N−1∏

k=0

λk

(
Rx

)
,

thus minimization of
∏

k σ2
yk

would occur if equality could be established above. Say that the
eigen-decomposition of the autocorrelation matrix of x(n), which we now denote by Rx, is

Rx = VxΛxV
t
x

for orthogonal eigenvector matrix Vx and diagonal eigenvalue matrix Λx. Then choosing T = Vt
x ,

otherwise known as the Karhunen-Loeve transform (KLT), results in the desired property:

E{y(m)yt(m)} = E{Vt
xx(m)xt(m)Vx} = Vt

xRxVx = Vt
xVxΛxV

t
xVx = Λx.

To summarize:

1. the orthogonal transformation matrix T minimizing reconstruction error variance has rows
equal to the eigenvectors of the input’s N×N autocorrelation matrix,

2. the variances of the optimal-transform outputs {σ2
yk
} are equal to the eigenvalues of the input

autocorrelation matrix, and

3. the optimal-transform outputs {y0(m), . . . , yN−1(m)} are uncorrelated. (Why? Note the zero-
valued off-diagonal elements of Ry = E{y(m)yt(m)}.)

• Note that the presence of mutually uncorrelated transform coefficients supports our approach of
quantizing each transform output independently of the others.

Example 1.2 (2×2 KLT Coder):
Recall Example 1.1 with Gaussian input having Rx =

`
1 ρ
ρ 1

´
. The eigenvalues of Rx can be determined from

the characteristic equation
˛
˛Rx − λI

˛
˛ = 0:

˛
˛
˛
˛

1 − λ ρ
ρ 1 − λ

˛
˛
˛
˛ = (1 − λ)2 − ρ2 = 0 ⇔ 1 − λ = ±ρ ⇔ λ = 1 ± ρ.

The eigenvector v0 corresponding to eigenvalue λ0 = 1+ρ solves Rxv0 = λ0v0. Using the notation v0 = ( v00
v01

)
and v1 = ( v10

v11
),

v00 + ρv01 = (1 + ρ)v00

ρv00 + v01 = (1 + ρ)v01
⇔ v01 = v00.

Similarly, Rxv1 = λ1v1 yields

v10 + ρv11 = (1 − ρ)v10

ρv10 + v11 = (1 − ρ)v11
⇔ v11 = − v10.

For orthonormality,

v2
00 + v2

01 = 1 ⇒ v0 =
1√
2

„
1
1

«

v2
10 + v2

11 = 1 ⇒ v1 =
1√
2

„
1
−1

«

.
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Thus the KLT is given by T = Vt
x = (v0 v1)

t = 1
√

2

`
1 1
1 −1

´
.

Using the KLT and optimal bit allocation, the error reduction relative to PCM is

σ2
r

˛
˛
TC

σ2
r

˛
˛
PCM

=
γy

γx
·

p
(1 + ρ)(1 − ρ)

1
2

`
(1 + ρ) + (1 − ρ)

´ =
p

1 − ρ2

since γy = γx for Gaussian x(n). This value equals 0.6 when ρ = 0.8, and 0.98 when ρ = 0.2 (compare to
Fig. 2).

1.5 Asymptotic Optimal Gain

• For an N × N transform coder, (4) presented an expression for the reconstruction error variance
σ2

r

∣
∣
TC

written in terms of the quantizer input variances {σ2
yk
}. Noting the N -dependence on σ2

r

∣
∣
TC

in (4) and rewriting it as σ2
r

∣
∣
TC,N

, a reasonable question might be: What is σ2
r

∣
∣
TC,N

as N →∞?

• When using the KLT, we know that σ2
yk

= λk where λk denotes the kth eigenvalue of Rx. If we
plug these σ2

yk
into (4), we get

σ2
r

∣
∣
TC,N

= γy2−2R

(
N−1∏

k=0

λk

)1/N

.

Writing (
∏

k λk)1/N = exp( 1
N

∑

k lnλk) and using the Toeplitz Distribution Theorem [1]

For any f(·), lim
N→∞

1

N

∑

k

f(λk) =
1

2π

∫ π

−π

f(Sx(ejω))dω

with f(·) = ln(·), we find that

lim
N→∞

σ2
r

∣
∣
TC,N

= γy2−2R exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

= γyσ2
x 2−2R SFMx

where SFMx denotes the spectral flatness measure of x(n), redefined below for convenience:

SFMx =
exp

(
1
2π

∫ π

−π
lnSx(ejω)dω

)

1
2π

∫ π

−π Sx(ejω)dω
.

Thus, with optimal transform and optimal bit allocation, asymptotic gain over uniformly quantized
PCM is

GTC,N→∞ =
σ2

r

∣
∣
PCM

σ2
r

∣
∣
TC,N→∞

=
γxσ2

x 2−2R

γyσ2
x 2−2R SFMx

=
γx

γy
SFM−1

x .

• Recall that, for the optimal DPCM system,

GDPCM,N→∞ =
σ2

r

∣
∣
PCM

σ2
r

∣
∣
DPCM,N→∞

=
σ2

x

σ2
e

∣
∣
min

,

where we assumed that the signal applied to DPCM quantizer is distributed similarly to the signal
applied to PCM quantizer and where σ2

e

∣
∣
min

denotes the prediction error variance resulting from

use of the optimal infinite-length linear predictor:

σ2
e

∣
∣
min

= exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

.
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Making this latter assumption for the transform coder (implying γy = γx) and plugging in σ2
e

∣
∣
min

yields the following asymptotic result:

GTC,N→∞ = GDPCM,N→∞ = SFM−1
x .

In other words, transform coding with infinite-dimensional optimal transformation and optimal bit
allocation performs equivalently to DPCM with infinite-length optimal linear prediction.

• The fact that optimal transform coding performs as well as DPCM in the limiting case does not
tell us the relative performance of these methods at practical levels of implementation, e.g., when
transform dimension and predictor length are equal and � ∞. Below we compare the reconstruction
error variances of TC and DPCM when the transform dimension equals the predictor length.

Recalling that

GDPCM,N−1 =
σ2

x

σ2
e

∣
∣
min,N−1

and

σ2
e

∣
∣
min,N−1

=
|RN |

|RN−1|
where RN denotes the N×N autocorrelation matrix of x(n), we find

GDPCM,N−1 = σ2
x

|RN−1|
|RN | , GDPCM,N−2 = σ2

x

|RN−2|
|RN−1|

, GDPCM,N−3 = σ2
x

|RN−3|
|RN−2|

, . . .

Recursively applying the equations above, we find

N−1∏

k=1

GDPCM,k = (σ2
x)N−1 |R1|

|RN | =
(σ2

x)N

|RN |

which means that we can write

|RN | = (σ2
x)N

(
N−1∏

k=1

GDPCM,k

)−1

.

If in the previously derived TC reconstruction error variance expression

σ2
r

∣
∣
TC,N

= γy2−2R

(
N−1∏

`=0

λ`

)1/N

we assume that γy = γx and apply the eigenvalue property
∏

` λ` = |RN |, the TC gain over PCM
becomes

GTC,N =
σ2

r

∣
∣
PCM

σ2
r

∣
∣
TC,N

=
γxσ2

x2−2R

γx2−2R · σ2
x

(
∏N−1

k=1 GDPCM,k

)−1/N

=

(
N−1∏

k=1

GDPCM,k

)1/N

< GDPCM,N .

The strict inequality follows from the fact that GDPCM,k is monotonically increasing with k.

To summarize, DPCM with optimal length-N prediction performs better than TC with optimal
N×N transformation and optimal bit allocation for any finite value of N . There is an intuitive
explanation for this: the propagation of memory in the DPCM prediction loop makes the effective

memory of DPCM greater than N , while in TC the effective memory is exactly N .
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1.6 Sub-Optimum Transforms

• Goal: Recall that the goal of the optimal orthogonal transform was to minimize the ratio of
geometric to arithmetic output variances:

(
∏N−1

k=0 σ2
yk

)1/N

1
N

∑N−1
k=0 σ2

yk

. (5)

The ratio (5) attains its maximum value (= 1) when σ2
yk

are equal for all k and takes on much
smaller values when the difference between the σ2

yk
(sometimes called the dynamic range of {σ2

yk
})

is large.

• Problem with KLT: The KLT, i.e., the orthogonal transform minimizing (5), is a function of the
input signal statistics. Specifically, the KLT equals the eigenvector matrix of the input autocorrela-
tion matrix. Unfortunately, realistic signals are non-stationary, requiring continual KLT redesign if
optimality is to be preserved, and eigenvector computation is computationally intensive, especially
for large N . Thus, the question becomes: Are there fixed orthogonal transforms that do a good job
of minimizing the ratio (5) for “typical” input signals? As we will see, the answer is yes. . .

• DFT Intuitions: For the sake of intuition, lets first consider choosing T as an orthogonal DFT
matrix. In this case, the coefficient variances {σ2

yk
} would be samples of the power spectrum and

the dynamic range of {σ2
yk
} would be determined by the relative input power in different frequency

bands.

Recalling that asymptotic TC (N → ∞) performance is determined by SFMx, which has the same
geometric-to-arithmetic-average structure as (5):

SFMx =
exp

(
1
2π

∫ π

−π lnSx(ejω)dω
)

1
2π

∫ π

−π
Sx(ejω)dω

= lim
N→∞

(
∏N−1

k=0 S(ejωk)
)1/N

1
N

∑N−1
k=0 S(ejωk)

∣
∣
∣
∣
∣
∣
∣
ωk=2πk/N

,

we might intuit that the DFT is optimal as N → ∞. The asymptotic optimality of the DFT can,
in fact, be proven [2]. Of course, we don’t have much reason to expect that the DFT would be
optimal for finite transform dimension N . Still, for many signals, it performs well. (See Fig. 3.)

• Other Transforms: The most commonly used orthogonal transform in speech, image, audio, and
video coding is the discrete cosine transform (DCT). The excellent performance of the DCT follows
from the fact that it is especially suited to “lowpass” signals, a feature shared by most signals in the
previously mentioned applications. Note that there are plenty of signals for which the DCT performs
poorly—it just so happens that such signals are not frequently encountered in speech, image, audio,
or video. We will describe the DCT and provide intuition regarding it’s good “lowpass” performance
shortly.

Like the DFT, the DCT has fast algorithms which make it extremely practical from an implementa-
tion standpoint. Another reasonably popular orthogonal transform, requiring even less in the way
of computation, is the discrete Hadamard transform (DHT), also described below.

Fig. 3 compares DFT, DCT, DHT, and KLT for various transform lengths N along with asymptotic
TC performance. Fig. 3(a) shows gain over PCM when using a lowpass autoregressive (AR) source
{x(n)} generated from white Gaussian noise {v(n)} via:

X(z) =
1

1 − 0.8z−1
V (z),

while Fig. 3(b) shows the gain for highpass {x(n)}:

X(z) =
1

1 + 0.8z−1
V (z).

See Fig. 4 for the power spectra of these two processes.
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Figure 3: GTC,N for various transforms and various N on an AR(1) lowpass (left) and highpass (right) sources.
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Figure 4: Power spectra of AR(1) sources used in the transform matrix comparisons of Fig. 3.

• The DHT: The N×N DHT is defined below for power-of-two N :

H2 =
1√
2

(
1 1
1 −1

)

H2N =
1√
2

(
HN HN

HN −HN

)

Note that HN is orthogonal1, i.e., HNHt
N = I. As an example

H4 =
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







Fig. 5 illustrates DHT basis vectors for the case N = 8.

The primary advantage of the DHT is that its implementation can be accomplished very efficiently.
Fig. 3 suggests that the DHT performs nearly as well as the KLT for N = 2 and 4, but its
performance falls well short of optimal for larger N .

1Caution: outputs of the Matlab command hadamard must be scaled by 1/
√

N to produce orthogonal DHT matrices!
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DHT

Figure 5: 8×8 DHT basis vectors.

• The DFT: The normalized2 DFT from {xn} to {yk} is defined below along with its inverse.

yk =
1√
N

N−1∑

n=0

xne−j 2π
N kn; k = 0 . . .N−1,

xn =
1√
N

N−1∑

k=0

ykej 2π
N kn; n = 0 . . .N−1.

The normalized DFT can be represented by a symmetric unitary3 matrix WN :

[
WN

]

k,n
=

1√
N

e−j 2π
N kn; k, n = 0 . . .N − 1.

By unitary, we mean that WNW∗t
N = I, where (·)∗ denotes complex conjugation. Note that a

unitary matrix is the complex-valued equivalent of an orthogonal matrix.

In practice, the N×N DFT is implemented using the fast Fourier transform (FFT), which requires
≈ N

2 log2 N complex multiply/adds when N is a power of two.

• The Real-Valued DFT: Since we assume real-valued xn, complex-valued DFT outputs yk might
seem problematic since transmitting both real and imaginary components would decrease our trans-
mission efficiency. For a real-valued DFT input, however, the DFT outputs exhibit conjugate sym-
metry which allows us to represent the N complex valued outputs with only N real-valued numbers.
More precisely, real-valued DFT input {xn} implies that DFT output {yk} has the property

yk = y∗
N−k, k = 1, 2, . . . , N/2,

which implies

Re{yk} = Re{yN−k} k = 1, 2, . . . , N/2,

Im{yk} = −Im{yN−k} k = 1, 2, . . . , N/2,

Im{y0} = Im{yN/2} = 0.

2Due to the norm-preserving scale factor 1/
√

N , the DFT definitions above differ from those given in most digital signal

processing textbooks.
3Outputs of the Matlab command dftmtx must be scaled by 1/

√

N to produce unitary DFT matrices.
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A good method by which to select non-redundant components of the DFT output is:

1. Compute complex-valued {yk} using the standard DFT.

2. Construct real-valued {y′
k} from {yk} as follows:

y′
0 = y0 (∈ R)

y′
1 =

√
2 Im{y1}

y′
2 =

√
2 Re{y1}

...

y′
N−3 =

√
2 Im{yN/2−1}

y′
N−2 =

√
2 Re{yN/2−1}

y′
N−1 = yN/2 (∈ R).

The method above is convenient because (i) it preserves the frequency ordering of the DFT and
(ii) it preserves the norm of the DFT output vector, i.e., ‖y′‖ = ‖y‖. Using the conjugate sym-
metry property of DFT outputs, we can write the transformation from {yk} from {y′

k} as a matrix
operation UN :

y
′

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 · · · · · · 0 0 0

0 −j/
√

2 0 0 · · · · · · 0 0 j/
√

2

0 1/
√

2 0 0 · · · · · · 0 0 1/
√

2

0 0 −j/
√

2 0 · · · · · · 0 j/
√

2 0

0 0 1/
√

2 0 · · · · · · 0 1/
√

2 0

.

.

.

.

.

.

0 · · · 0 −j/
√

2 0 j/
√

2 0 · · · 0

0 · · · 0 1/
√

2 0 1/
√

2 0 · · · 0

0 · · · 0 0 1 0 0 · · · 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

| {z }

UN

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Re{y0}
Re{y1} + jIm{y1}
Re{y2} + jIm{y2}

.

.

.

Re{yN/2−1} + jIm{yN/2−1}
Re{yN/2}

Re{yN/2−1} − jIm{yN/2−1}

.

.

.

Re{y2} − jIm{y2}
Re{y1} − jIm{y1}

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

| {z }

y

The normalization feature guarantees that UN is unitary (which is easily checked by inspection).
Then UNWN , the product of two unitary matrices, is also unitary. Since UNWN is actually real-
valued (since it takes any real-valued x to a real-valued y′) it should be referred to as orthogonal
rather than unitary. Henceforth we rename UNWN the real-valued DFT matrix Wr

N

Wr
N := UNWN .

It is easily checked that the basis vectors of Wr
N are sampled sines and cosines at the uniformly

spaced frequencies {2πk/N ; k = 0, . . . , N/2}. Fig. 6 gives an illustration of the real-valued DFT
basis vectors for the case N = 8.

Example 1.3 (DFT and Real-valued DFT for N = 4):

W4 =
1

2

0

B
B
@

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

1

C
C
A

, x =

0

B
B
@

3
−1
4
2

1

C
C
A

, W4x =

0

B
B
@

4
−1/2 + j3/2

3
−1/2 − j3/2

1

C
C
A

.

Wr

4 =
1

2

0

B
B
@

1 1 1 1

0 −
√

2 0
√

2√
2 0 −

√
2 0

1 −1 1 −1

1

C
C
A

, x =

0

B
B
@

3
−1
4
2

1

C
C
A

, Wr

4x =

0

B
B
@

4

3/
√

2

−1/
√

2
3

1

C
C
A

.

Recall that when N is a power of 2, an N -dimensional complex-valued FFT requires ≈ N
2 log2 N

complex multiply/adds. When the input is real, however, an N -dimensional FFT may be computed
using ≈ N log2 N real multiply/adds [3].
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DFT

Figure 6: 8×8 Real-valued DFT basis vectors.

• The DCT: The DCT is defined below along with its inverse

yk =

√

2

N
αk

N−1∑

n=0

xn cos
(2n + 1)kπ

2N
; k = 0 . . .N−1,

for α0 = 1/
√

2, αk 6=0 = 1,

xn =

√

2

N

N−1∑

k=0

αk yk cos
(2n + 1)kπ

2N
; n = 0 . . .N−1,

The DCT can be represented by an orthogonal matrix CN :

[
CN

]

k,n
=

√

2

N
αk cos

(2n + 1)kπ

2N
; k, n = 0 . . .N−1.

See Fig. 7 for an illustration of DCT basis vectors when N = 8.

• A Fast DCT: There are a number of fast algorithms to compute the DCT. The method presented
below is based on the FFT and leads to intuition concerning the good “lowpass” performance of
the DCT.

1. Create a 2N -length mirrored version of N -length {xn} (see Fig. 8(c)):

x̄n =

{

xn n = 0, 1, . . . , N−1,

x2N−1−n n = N, N +1, . . . , 2N−1.

2. Compute {ȳk}, the 2N -point DFT of {x̄n}:

ȳk =
1√
2N

2N−1∑

n=0

x̄ne−j 2π
2N kn =

√

2

N
ej π

2N k
N−1∑

n=0

xn cos
(2n + 1)kπ

2N
.
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DCT

Figure 7: 8×8 DCT basis vectors.

3. Compute {yk}, the N -point DCT outputs, from {ȳk}:

yk = e−j π
2N kαkȳk; k = 0, 1, . . . , N−1.

Assuming a real-valued input, the scheme outlined above can be implemented using

≈ 2N + 2N log2

2N

2
= 2N(1 + log2 N) real-valued multiply/adds

where we are assuming use of the real-FFT described previously.

• DCT vs. DFT Performance for Lowpass Signals: Fig. 3 suggests that DCT and DFT performance
both equal KLT performance asymptotically, i.e., as transform dimension N → ∞. Indeed, this
can be proven [2]. A more practical question is: How do DCT and DFT performances compare for
finite N? To answer this question, we will investigate the effects of input data block length on the
DCT and DFT.

To start, consider the DFT of an N -length input block {x0, . . . , xN−1}:

yk =
1√
N

N−1∑

n=0

xne−j 2π
N kn; k = 0 . . .N−1.

It can be seen that the DFT outputs {X0, . . . , XN−1} are samples of the discrete-time Fourier
transform (DTFT) at frequencies {ωk = 2π

N k; k = 0 . . .N−1}:

X(ω) =
1√
N

N−1∑

n=0

xne−jωn, yk = X
(

2π
N k
)
.

Now lets consider a periodic extension of {x0, . . . , xN−1} which repeats this N -length sequence a
total of L times:

x′
n =

{
1√
L

x〈n〉N
−NL

2 ≤ n < NL
2

0 else.
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Above, 〈n〉N denotes “n modulo N” and L is assumed even (see Fig. 8(a)-(b)). Here is the interesting
point: the DTFT of the NL-length periodic extension equals the DTFT of the original N -length

data block when sampled at the frequencies {ωk}!

X ′(ωk) =
1√
NL

NL/2−1
∑

n=−NL/2

x′
ne−j 2π

N kn

=
1√
NL

L/2−1
∑

`=−L/2

N−1∑

m=0

x′
m+`N e−j 2π

N k(m+`N)

=
1

L
√

N

L/2−1
∑

`=−L/2

N−1∑

m=0

xme−j 2π
N k(m+`N)

=
1√
N

N−1∑

m=0

e−j 2π
N km

= X(ωk).

This implies that the overall spectral shape of X ′(ω) will be inherited by the DFT outputs {X0, . . . , XN−1}.
So what is the overall shape of X ′(ω)?

Say that {xn} is a lowpass process. Being lowpass, we expect the time-domain sequence {xn} to
look relatively “smooth.” If the starting and ending points of the N -block, are different, however,
the periodic extension {x′

n} will exhibit time-domain discontinuities (see Fig. 8(b)) that are unchar-
acteristic of the process {xn}. These discontinuities imply that X ′(ω) will contain high-frequency
content not present in the power spectrum of the lowpass input process. Based on our previous
findings, if artificial high-frequency content exists at X ′(ωk), it must also exist at X(ωk) = Xk. In
conclusion, the periodic extension {x′

n} provides an intuitive explanation of why short-block DFT
analysis of lowpass signals often seems corrupted by “artificial” high-frequency content.

So why is this important? Recall that transform performance is proportional to the dynamic range
of transform output variances. If the DFT outputs corresponding to otherwise low spectral energy
are artificially increased due to short-window effects, the dynamic range of {σ2

yk
} will decrease, and

DFT performance will fall short of optimal.

(a)

(b)

(c)

(d)

· · ·

· · ·

· · ·

· · ·

Figure 8: Illustration of periodic extensions inherent to DFT and DCT: (a) N-length DFT input block, (b)
periodic extension inherent to DFT, (c) equivalent 2N-length DFT-input-block for DCT, (d) periodic extension
inherent to DCT.

Now lets consider the DCT. From derivation of the fast algorithm, we know that the N DCT output
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magnitudes from length-N input {x0, . . . , xN−1} are equal to the first N DFT output magnitudes
from length-2N input {x̄n}—a mirrored version of {x0, . . . , xN−1}. (See Fig. 8(c).) Due to the
mirroring effect, the periodic extension of {x̄n} will not have the discontinuities present in the
periodic extension of {xn}, and so a 2N -point DFT analysis of {x̄n} will not have “artificial” high
frequency enhancement. Assuming that the process from which {xn} was extracted is lowpass, the
DCT outputs will exhibit large dynamic range, and an improvement over DFT coding performance
is expected. This is confirmed by Fig. 3(a).

References

[1] U. Grenander and G. Szego, Toeplitz Forms and Their Applications, Berkeley, CA: University of
California Press, 1958.

[2] N.S. Jayant and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice-Hall, 1984.

[3] H.V. Sorensen, D.L. Jones, M.T. Heideman, and C.S. Burrus, “Real-valued fast Fourier transform
algorithms,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp. ??, June,
1987.

c©P. Schniter, 1999 16


