EE-597

Audio Signal Processing Fall 1999

Homework #6 June 11, 2004

1. (a)
(b)

HOMEWORK #6 SOLUTIONS

The observed signal z(n) and corrupted signal s(n) are shown in Fig. 1.

To solve for A(z) from observed data {z(—P),z(—=P +1),...,z(M — 1)}, we create the Pth-
order AR model

x(0) x(—1) x(=2) .- x(—P) ay e(0)
x(1) x(0) z(=1) .- z(—=P+1) ag e(1)
: - ; ; : o :
x(M'— 1) ,T(M'—Q) ZC(M'— 1) - x(M —'P—l) a'p e(M'— 1)
X X a e,

which implies that prediction error can be written
e, = x— Xa
and thus sum-squared prediction error can be written
le:lI*> = ||x—Xa|? = (x —Xa)!(x — Xa) = x'x —2a’'X'x +a'X'Xa.

Finding a which minimizes ||e;|? can be accomplished by standard vector calculus, yielding

least-squares estimate

a = (X'X)'X'x.
The polynomial A(z) = Zle ¢z~ * can be constructed from & = (a1, g, . ..,ap)t. Simulating
the data model specified in the homework, we find that

A(z) = 0.5439271 +0.2003272 — 0.0068z > 4 0.05992~* — 0.03362°, where
A(z) = 3.1166271 — 3.87692 % 4 2.26612 > — 0.51842 "

Thus A(z) and A(z) do not appear similar at all, which can be attributed to the fact that 2(n)
is a very noisy version of s(n).

We compute the prediction error sequence resulting from the model A(z) via
e, = x— Xa.

Sorting the elements in e, and throwing away the largest 5%, we compute o, = 0.2826.
Thresholding the prediction error sequence e, (n) at 3o. we estimate the corrupted indices as

N; = {27,30,31,37,38,39,44, 48,51,52,63,64,79,80,81}, where
N; = {6,27,30,48,51,63,75,79,80,139}.
The sets A; and N; share various points, though a number of corrupted locations in N; were

not detected and a number of detections in N; were false alarms. See also Fig. 1. (Note: the
plot starts the data index at n = —P rather than at n = 1.)

(©P. Schniter, 1999 1

(d) To estimate s(n) at the though-to-be-corrupted locations Aj, we formulate the AR model in
a different way:

e(0) ap oo —n 1 s(—P)
e(1) “op e m s(=P+1)
_ —ap - -4 1
e(M—1) ip a1 s(M—1)
e, X S

The model can be easily partitioned into “known” and “unknown” components:
€s = Aksk +Ausu
where s, contains the elements of s whose indices are in the set N; and sk contains the

remaining elements, and where Ay and A, are formed from the corresponding columns of A.

The vector s, minimizing |le;||? can be found (via standard vector calculus) to be
Sy = — (AEAu)ilAEAkSk.

The sequence {§(n)} is obtained by correctly indexing the elements from §, and si. (See Fig. 1
for a plot.) The restoration process has been successful in removing the large noise spikes, but
the restored signal is not exactly equal to the noiseless signal.

(e) See Fig. 1.
2. (a) Using the sequence {$(n)} and the technique of 1(b), we get a better estimate of A(z):

A(z) = 1.3866271 —0.1771272 — 0.36522 73 — 0.16192 % + 0.252027°, where
A(z) = 31166z " —3.8769272 +2.26612 > — 0.51842*.

than we did using the sequence {z(n)}. This is because the worst corrupting noise in {z(n)}
has been removed in forming {5(n)}.

(b) Estimating the corrupted indices using the technique in 1(c), we find

N; = {6,7,27,30,38,39,40,41, 48,51, 63, 75,79, 80, 81, 83,140} where
N; = {6,27,30,48,51,63,75,79,80,139}.

Clearly Nj is a better estimate of A than is J\7;-, though the estimate is by no means perfect.

(c) The result of using A(z) and N; to estimate {s(n)} is shown in Fig. 2. The estimate {35(n)}
is quite good—definitely better than {$(n)}—and the only substantial departure from {s(n)}
occurs in the second-to-last signal peak.

(d) See Fig. 2.

(e) The third and fourth estimations of A(z) were:

Asz(z) = 2.0933z7' —1.3824272 4 0.12592% 4 0.00412* + 0.13752°
Ay(z) = 3.117427" —3.86662 2 +2.1847273 — 0.39822"* — 0.04942 5,

and the latter is very close to the true A(z). The corresponding estimations of N; were:

Nis = {6,27,30,48,51,63,75,79,80,139, 140}

Nia = {6,27,30,48,51,63,75,79,80,139},

the last of which equals the true set of corruption locations A;! Figures 3 and 4 show the
corresponding estimates of {s(n)}, which appear nearly perfect.

(©P. Schniter, 1999 2

click restoration

4 T ' T T
: — restored
3k : — — ideal B
: corrupted

0 20 40 60 80 100 120 140

click detection
5 T T T T
—— prediction error
45 - detected f
threshold

35F 1

ol— ! ! ! ! \
0 20 40 60 80 100 120 140

Figure 1: First round of click detection/restoration

©P. Schniter, 1999

click restoration

T H T

— restored
— - ideal
corrupted

20

40

60 80

click detection

100

120 140

35F

25F

0.5

™

—— prediction error
detected
threshold

©P. Schniter, 1999

20

40

60 80

100

120 140

Figure 2: Second round of click detection/restoration

click restoration

v

restored
ideal
corrupted

20

40

60

80

click detection

100

120

140

35F

25F

0.5F

NAA

—— prediction error

detected
threshold

©P. Schniter, 1999

20

40

60

80

100

120

Figure 3: Third round of click detection/restoration

140

click restoration

4 T ' T T
: — restored
3k : — — ideal B
: corrupted

0 20 40 60 80 100 120 140

click detection
5 T T T T
—— prediction error
45 - detected f
threshold

35F 1

25F 1

" T L | e

0 20 40 60 80 100 120 140

Figure 4: Fourth round of click detection/restoration

©P. Schniter, 1999

Matlab Code:

% LSAR detection/reconstruction for homeworké

% reset seed
randn(’state’,0);

% parameters

M = 150; % block length

AR model order

outlier = 3; 7% used in error thresholding

% create AR signal

Ypoles = [0.8,0.9].*exp(j*2+pi*[0.01,0.09]);

%tmp = poly([poles,conj(poles)]); a_true = -tmp(2:5);
a_true = [3.1166 -3.8769 2.2661 -0.5184];
hfreqz(1,[1 -a_true])

s = filter(1,[1 -a_truel,randn(1,M+P));

s = s/sqrt(var(s)); % unit variance

% add noise bursts

sort (P+ceil (Mxrand(1,round(M/10)))); % random corruption indices
i=1[6 27 30 48 51 63 75 79 80 139 1;
n = 2%randn(1,M+P); Y% noise process

x = s;

x(1) = s(1)+n(i); % corruption at indices i

% estimate AR model

xvec = x(P+[1:M]).’;

X = zeros(M,P); for p=1:P, X(:,p) = x(P-p+[1:M])’; end;

a = X\xvec; % AR coefficient estimates (i.e., a = pinv(X)*xvec;)
A = [zeros(M,P),eye(M)];

aflip = -fliplr(a.’); for n=1:M, A(n,n+[0:P-1]) = aflip; end;

e = xvec-Xxa; % prediction error

% detect corruption indices

e_ord = sort(abs(e));

sig_e = sqrt(var(e_ord(1:ceil(0.95*length(e_ord))))); % remove outliers
thresh = outlier*sig_e;

ibad = find(abs(e)>thresh)+P;

igood = setdiff ([1:M+P],ibad);

% interpolate
sh = x;
sh(ibad) = -A(:,ibad)\(A(:,igood)*x(igood).’);

figure(1);
subplot(211)
plot([-P:M-1],sh,’-?, [-P:M-1],s, -1, [i-P-1] ,x(i),’ .g’, [-P:M-1] ,x,? :k*);
axe = axis; axis([-P,M-1,axe(3:4)1);
title(’click restoration’);
legend(’restored’,’ideal’,’corrupted’,0);
subplot(212)
plot([0:M-1],abs(e),’g’, [ibad-P-1],abs(e(ibad-P)),’.m’);
hold on; plot([-P,M-1],thresh*[1,1],’k:’); hold off;
axe = axis; axis([-P,M-1,axe(3:4)1);
title(’click detection’);
legend(’prediction error’,’detected’,’threshold’,0);
orient tall;

% iteratively re-estimate quantities
for r=1:3,
% re-estimate AR model
shvec = sh(P+[1:M]).’;
Sh = zeros(M,P); for p=1:P, Sh(:,p) = sh(P-p+[1:M])’; end;
a = Sh\shvec; 7% AR coefficient estimates (i.e., a = pinv(Sh)*shvec;)
aflip = -fliplr(a.’); for n=1:M, A(n,n+[0:P-1]) = aflip; end;

% detect corruption indices

e = xvec-Sh*a; % error

e_ord = sort(abs(e));

sig_e = sqrt(var(e_ord(1:ceil(0.95*length(e_ord)))));% remove outliers
thresh = outlier*sig_e;

ibad = find(abs(e)>thresh)+P;

igood = setdiff([1:M+P],ibad);

% interpolate
sh = x;
sh(ibad) = -A(:,ibad)\(A(:,igood)*x(igood).’);

figure(r+1);

subplot(211)
plot([-P:M-1],sh,’-’, [-P:M-1],s,’--r’, [i-P-1],x(i),’.g’, [-P:M-1],x, ’:k’);
axe = axis; axis([-P,M-1,axe(3:4)1);
title(’click restoration’);
legend(’restored’,’ideal’,’corrupted’,0);

subplot(212)
plot([0:M-1],abs(e),’g’, [ibad-P-1] ,abs (e(ibad-P)),’.m’);
hold on; plot([-P,M-1],thresh*[1,1],’k:?); hold off;
axe = axis; axis([-P,M-1,axe(3:4)1);
title(’click detection’);
legend(’prediction error’,’detected’,’threshold’,0);

orient tall;

end;

©P. Schniter, 1999

