Homework #3

EE-597

Fall 1999 June 11, 2004

HOMEWORK #3 SOLUTIONS

(Note: Matlab code appears at the end.)

1. The constraint in the optimization problem

$$\min_{\{R_k:k\in\mathcal{K}_u\}}\sum_{k\in\mathcal{K}_u}\sigma_{y_k}^22^{-2R_k}\quad\text{s.t.}\quad R=\frac{1}{N}\sum_{k=0}^{N-1}R_k,$$

can be rewritten

$$R = \frac{1}{N} \sum_{k \in \mathcal{K}_a} R_k + \frac{1}{N} \sum_{k \in \mathcal{K}_u} R_k$$

since $\mathcal{K}_u \cup \mathcal{K}_a = \{0, 1, \dots, N-1\}$ and $\mathcal{K}_u \cap \mathcal{K}_a = \{\}$. Since the allocated bit rates $\{R_k : k \in \mathcal{K}_a\}$ are known, the constraint can be rewritten

$$\bar{R} := \frac{NR - \sum_{k \in \mathcal{K}_a} R_k}{\operatorname{size}(\mathcal{K}_u)} = \frac{1}{\operatorname{size}(\mathcal{K}_u)} \sum_{k \in \mathcal{K}_u} R_k$$

for known \overline{R} . The optimization problem is now in the form

$$\min_{\{R_k:k\in\mathcal{K}_u\}}\sum_{k\in\mathcal{K}_u}\sigma_{y_k}^2 2^{-2R_k} \quad \text{s.t.} \quad \bar{R} = \frac{1}{\operatorname{size}(\mathcal{K}_u)}\sum_{k\in\mathcal{K}_u}R_k.$$
 (1)

In the notes, we proved that a different optimization problem:

$$\min_{\{R_k\}} \sum_{k=0}^{N-1} \sigma_{y_k}^2 2^{-2R_k} \quad \text{s.t.} \quad R = \frac{1}{N} \sum_{k=0}^{N-1} R_k, \tag{2}$$

had the solution

$$R_{\ell}^{\text{opt}} = R + \frac{1}{2} \log_2 \left(\frac{\sigma_{y_{\ell}}^2}{\left(\prod_{k=0}^{N-1} \sigma_{y_k}^2 \right)^{1/N}} \right) \quad \text{for} \quad \ell = 0, 1, \dots, N-1.$$
(3)

But (2) is identical to (1) after setting

$$\begin{array}{rccc} R & \to & R \\ \{0, 1, \dots, N-1\} & \to & \mathcal{K}_u. \end{array}$$

Thus, the solution to (1) is found by applying the notational changes above to (3):

$$R_{\ell}^{\text{qua}} = \frac{NR - \sum_{k \in \mathcal{K}_a} R_k}{\text{size}(\mathcal{K}_u)} + \frac{1}{2} \log_2 \left(\frac{\sigma_{y_{\ell}}^2}{\left(\prod_{k \in \mathcal{K}_u} \sigma_{y_k}^2\right)^{1/\text{size}(\mathcal{K}_u)}} \right) \quad \text{for} \quad \ell \in \mathcal{K}_u.$$

2. (a) For $x(n) = \sum_{i=0}^{\infty} h_i v(n-i)$ and unit-variance white v(n), we know that

$$r_x(k) = \sum_{i=0}^{\infty} h_i h_{k+i} \approx \sum_{i=0}^{N_h} h_i h_{k+i}$$

where N_h is a suitably large number. Then

$$S_x(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_x(k)e^{-j\omega k} \approx \sum_{k=-N_h}^{N_h} r_x(k)e^{-j\omega k}$$

Fig. 1 plots a truncated version of $r_x(k)$ and the resulting approximation to $S_x(e^{j\omega})$ for $\{h_i\}$ corresponding to the system $H(z) = 1/(1-0.8z^{-1})$ and N_q chosen by Matlab's impz command.

Figure 1: Truncated autocorrelation and power spectrum for source of Problem 2.

(b) From the notes, optimal transformation and bit allocation yield

$$\sigma_r^2\big|_{\mathrm{TC},N\to\infty} = \gamma_y \sigma_x^2 \, 2^{-2R} \, \mathrm{SFM}_x$$

Using

$$\gamma_y = \frac{1}{3} \frac{y_{\max}^2}{\sigma_y^2} \approx \frac{1}{3} \frac{(\phi_y \sigma_y)^2}{\sigma_y^2} = \frac{1}{3} \phi_y^2 = \frac{1}{3} 3^2 = 3,$$

using R = 4, and using the calculated values $\sigma_x^2 = 2.7778$ and $\text{SFM}_x = 0.3600$, we find that $\sigma_r^2|_{\text{TC},N\to\infty} = 0.0117$.

(c) From the notes, optimal transformation and bit allocation yield

$$\sigma_r^2\big|_{\mathrm{TC},N} \; = \; \gamma_y 2^{-2R} \left(\prod_{k=0}^{N-1} \lambda_k\right)^{1/N}$$

where $\{\lambda_k\}$ are the eigenvalues of the $N \times N$ input autocorrelation matrix \mathbf{R}_x . Matlab computation gives $\sigma_r^2|_{\mathrm{TC},N} = 0.0125$.

©P. Schniter, 1999

(d) If we define the transform-output vector $\mathbf{y}(m) = \mathbf{T}\mathbf{x}(m)$ then

$$(\sigma_{y_0}^2, \dots, \sigma_{y_{N-1}}^2)^t = \operatorname{diag}(\operatorname{E}\{\mathbf{y}(m)\mathbf{y}^t(m)\})$$

= diag(E{T $\mathbf{x}(m)\mathbf{x}^t(m)\mathbf{T}^t\})$
= diag(TE{ $\mathbf{x}(m)\mathbf{x}^t(m)$ }T^t)
= diag(T $\mathbf{R}_x\mathbf{T}^t$).

From the notes, optimal bit allocation yields

$$\sigma_r^2 \big|_{\mathrm{TC},N} = \gamma_y 2^{-2R} \left(\prod_{k=0}^{N-1} \sigma_{y_k}^2 \right)^{1/N}$$

Using $\{\sigma_{y_k}^2\}$ calculated in Matlab for DCT matrix **T**, $\sigma_r^2|_{\text{TC},N} = 0.0126$. (e) Implementing the adaptive transform coder, we obtain Fig. 2 and $\mathcal{E}_{\text{TC}} = 0.0184$

Figure 2: Optimal and practical bit allocations for output branches k = 0 and k = N-1 versus input block m.

- (f) Implementing the PCM coder, we obtain $\mathcal{E}_{PCM} = 0.0341$
- (g) The results of parts (b)-(f) are summarized below:

transform	bit allocation	σ_r^2
KLT, $N \to \infty$	optimal	0.0117
KLT, $N = 16$	optimal	0.0125
DCT, $N = 16$	optimal	0.0126
DCT, $N = 16$	practical	≈ 0.0184
PCM	n.a.	≈ 0.0341

We conclude the following

• Transform dimension N = 16 is large enough to give performance close to the asymptotic $N \to \infty$ case.

- For the lowpass input process x(n) (see Fig. 1), the DCT performs nearly as well as the KLT.
- Practical bit allocation increases reconstruction error by about 50% over optimal bit allocation.
- For the lowpass input process x(n), DCT coding with practical bit allocation yields reconstruction error that is about half of that for PCM.
- 3. (a) From 2(d) and the notes, we know that

$$G_{\mathrm{TC}} = \frac{\gamma_x}{\gamma_y} \frac{\sigma_x^2}{\left(\prod_{k=0}^{N-1} \sigma_{y_k}^2\right)^{1/N}} \quad \text{where} \quad (\sigma_{y_0}^2, \dots, \sigma_{y_{N-1}}^2)^t = \operatorname{diag}(\mathbf{TR}_x \mathbf{T}^t).$$

More compactly,

$$G_{\mathrm{TC}} = rac{\sigma_x^2}{\left(\prod_{k=0}^{N-1} \left[\mathbf{TR}_x \mathbf{T}^t\right]_{k,k}
ight)^{1/N}}$$

where we have used the fact that Gaussianity is preserved under linear transformation, so that $\gamma_x = \gamma_y$. Fig. 3 plots G_{TC} versus N for various transforms when x(n) is generated by filtering white noise with the filter

$$H(z) = \frac{1}{A(z)} = \frac{1}{1 - 0.8z^{-1} + 0.4z^{-2}}$$

Figure 3: G_{TC} versus transform dimension for various transforms and source from 3(a).

(b) Fig. 4 plots G_{TC} versus N for various transforms when x(n) is generated by filtering white noise with the filter

$$H(z) = \frac{1}{A(z)} = \frac{1}{1 + 0.7z^{-1} + 0.2z^{-2}}.$$

Figure 4: TC gain over PCM versus transform dimension for various transforms on source from 3(b).

(c) The following interpretations are drawn from a comparison of Fig. 3 and Fig. 4.

- The KLT performs at least as well as the other transforms for all N, as expected.
- The DCT does better than the real-DFT in 3(a) and worse in 3(b). This is expected because the input process in 3(a) is lowpass while the input process in 3(b) is highpass.
- The input spectrum in 3(b) is flatter than that of 3(a) hence less TC-gain-over-PCM is available. This might be guessed from looking at the spectra in Fig. 5 and Fig. 6.
- The KLT, real-DFT, and DCT, approach asymptotic optimal performance as $N \to \infty$, while the DHT does not.

Figure 5: Truncated autocorrelation and power spectrum for source of 3(a).

Figure 6: Truncated autocorrelation and power spectrum for source of 3(b).

Matlab code for Problem 2:

% parameters A=[1,-0.8]; A=[1,-0.8]; B=1; sig2_v = 1; % driving noise variance N = 16; % transform dimension R = 4; % average bits/sample alf = 0.95; % variance calculation forget factor gam = 3; % uniform quantizer factor % calculate autocorrelation b = impz(B,A); rx = xcorr(b,b); rx=rx(:); lag_x = (length(rx)-1)/2; sig2_x = rx(lag_x+1); % calculate power spectrum % calculate power spectrum N_w = 4096; w = linspace(-pi,pi,N_w).'; dw = 2*pi/N_w; Sx = zeros(N_w,1); for k=-lag_x:lag_x, Sx = Sx + rx(k+lag_x+i)*exp(sqrt(-1)*w*k); end; Sx = real(Sx); SFM_x = exp(sum(log(Sx))*dw/2/pi)/(sum(Sx)*dw/2/pi); figure(1); figure(1); subplot(21) stem([-lag_x:lag_x],rx); title('r_x'); subplot(212) plot(w,10*log10(real(Sx))); axis([-pi,pi,-10,20])
title('S_x');
ylabel('dB')
drawnow; % reconstruction error with optimal bit allocation and N=infty KLT E_tc_asymt = sig2_x*gam*2^(-2*R)*SFM_x % create NxN autocorrelation matrix Rx = toeplitz([rx(lag_x+[1:min(lag_x+1,N)]); zeros(N-lag_x-1,1)]); [Vx,Lx] = eig(Rx); % reconstruction error with optimal bit allocation and KLT E_tc_optRoptT = gam*2^(-2*R)*prod(diag(Lx))^(1/N) % transform matrices % transform matrices T = dctmtx(N); % DCT %T = dftrmtx(N); % real DFT %T = hadamard(N)/sqrt(N); % DHT %T = Vx'; % KLT sig2_y = diag(T*Rx*T'); % reconstruction error with optimal bit allocation E_tc_optR = gam*2^(-2*R)*prod(sig2_y)^(1/N) % create and transform input signal M = 1000; v = randm(1,M*N)*sqrt(sig2_v); x = filter(B,A,v); xx = zeros(N,M); xx(:) = x; % each column is an input N-block yy = T*xx; % transform input signal % adaptive coding Ro = zeros(N,M); Rq = zeros(N,M); yq = zeros(N,M); for i=1:M, % Trecursive variance estimation if i==1. r 1==1, sig2_y_hat = sig2_x*ones(N,1); %sig2_y_hat = sig2_y; else sig2_y_hat = (1-alf)*yq(:,i-1).^2 + alf*sig2_y_hat_old; end; sig_y_hat = sqrt(sig2_y_hat); sig2_y_hat_old = sig2_y_hat; % bit allocation end; Rq(:,i) = R_q; % quantization L = 2. (R_q) ; for k=1:N, % quantizer design y_thresh = linspace(-gam*sig_y_hat(k),gam*sig_y_hat(k),L(k)+1); y_quant = y_thresh(2:L(k)+1)-gam*sig_y_hat(k)/L(k); y_thresh(1) = -inf; y_thresh(L(k)+1) = inf; %quantizer implementation yq(k,i) = y_quant(max(find(yy(k,i) > y_thresh))); end; end:

- % decoding zz = (T.')*yq; z = zz(:).'; E_tc = (z-x)*(z-x)'/(N*M)
- % compare to PCM error... L_x = 2^R; x_thresh = linspace(-gam*sqrt(sig2_x),gam*sqrt(sig2_x),L_x+1); x_quant = x_thresh(2:L_x+1)-gam*sqrt(sig2_x)/L_x; x_thresh(1) = -inf; x_thresh(L_x+1) = inf; z_tc = zeros(1,N*M); for l=1:L_x, z_tct find((z>x_thresh(1))&(x<x_thresh(1+1)))) = x_quant(1); end; E_pcm = (z_tc-x)*(z_tc-x)'/(N*M) figure(2)
- ligure(z) plot([1:M],Ro([1,N],:), [1:M],Rq([1,N],:),'--'); ylabel('bits/sample'); xlabel('m') legend('optimal, k=0','practical, k=0','optimal, k=N-1','practical, k=N-1',0);

Matlab code for Problem 3:

% parameters A=[1,0.7,0.2]; B=1; B=1; sig2_v = 1; % driving noise variance NN = 2.^[0:6]; % transform dimension % calculate autocorrelation b = impz(B,A); rx = xcorr(b,b); rx=rx(:); lag_x = (length(rx)-1)/2; sig2_x = rx(lag_x+1); % calculate power spectrum N_w = 4096; w = linspace(-pi,pi,N_w).'; dw = 2*pi/N_w; Sx = zeros(N_w,1); SX = cellSx(:_w,1), for k=-lag_x:lag_x, Sx = Sx + rx(k+lag_x+1)*exp(sqrt(-1)*w*k); end; SX = real(Sx); SFM_x = exp(sum(log(Sx))*dw/2/pi)/(sum(Sx)*dw/2/pi) % figure(1); subplot(211) stem([-lag_x:lag_x],rx); title('r_x'); subplot(212) plot(w,10*log10(real(Sx))); axis([-pi,pi,-10,20]) title('S_x'); ylabel('dB') drawnow; % compare KLT, DFT, DCT, and DHT G_dft = zeros(1,length(NN)); G_dct = zeros(1,length(NN)); G_tht = zeros(1,length(NN)); for l=1:length(NN), % create NxN autocorrelation matrix N = NN(1); Rx = toeplitz([rx(lag_x+[1:min(lag_x+1,N)]); zeros(N-lag_x-1,1)]); Lx = eig(Rx); % transform matrices T_dft = dftrmtx(N); T_dct = dctmtx(N); T_dht = hadamard(N)/sqrt(N); % coefficient variances % coefficient variances sig2_y_klt = Lx; Ry_dft = T_dft*Rx*T_dft'; sig2_y_dft = diag(Ry_dft); Ry_dct = T_dct*Rx*T_dct'; sig2_y_dct = diag(Ry_dct); Ry_dht = T_dht*Rx*T_dht'; sig2_y_dht = diag(Ry_dht); % gains over pcm (assuming Gaussian source) G_klt(1) = sig2_x/prod(sig2_y_klt)^(1/N); G_dft(1) = sig2_x/prod(sig2_y_dft)^(1/N); G_dct(1) = sig2_x/prod(sig2_y_dft)^(1/N); end; figure(2); plot(NN,ones(size(NN))/SFM_x,'--',... plot(mx,ones(stee(xm)/prm_x,'--',... NN,G_ktt,'-d',... NN,G_dtt,'-o',... NN,G_dtt,'-s'); legend('1/SFMz','KLT','DCT','DFT','DHT',0); ylabel('Gair'); xlabel('N'); title('(a)');

dftrmtx.m:

% makes orthogonal real-valued DFT matrix function T_dftr = dftrmtx(N) if N==1, T_dftr = 1; else, T_dft = dftmtx(N)/sqrt(N); C2R = zeros(N); C2R(1,1)=1; C2R(N,1+N/2)=1; for n=1:N/2-1. C2R(1+[2*n-1:2*n],1+n) = [-sqrt(-1);1]/sqrt(2); C2R(1+[2*n-1:2*n],1+N-n) = [sqrt(-1);1]/sqrt(2); end; end;