
EE-597 Audio Signal Processing Fall 1999

Homework #2 June 11, 2004

HOMEWORK #2 SOLUTIONS

(Note: Matlab code appears at the end.)

1. (a) Using the whiteness of {v(n)},

rx(k) = E{x(n)x(n − k)} where x(n) =
∑

i

biv(n − i)

= E

{
∑

i

biv(n − i)
∑

l

blv(n − k − l)

}

=
∑

l

∑

i

blbi E{v(n − i)v(n − k − l)}
︸ ︷︷ ︸

σ2
v
δ(i−(k+l))

= σ2
v

∑

l

blbk+l

(b) Using the fact that rx(k) = rx(−k),

Sx(ejω) =

∞∑

k=−∞

rx(k)e−jωk

= −rx(0) +
∞∑

k=0

rx(k)
(
e−jωk + ejωk

)

= −rx(0) + 2

∞∑

k=0

rx(k) cos(ωk).

Using σ2
v = 1 and the specified {bi}, nonzero values of rx(k) are plotted in Fig. 1. The power

spectral density (PSD) Sx(ejω) was computed at 4096 uniformly-spaced values of ω in the

interval [−π, π] and plotted in Fig. 1.

(c) Matlab found that SFMx = 0.3400 and σ2
e

∣
∣
min,N→∞

= 0.9992 where

SFMx =
exp

(
1
2π

∫ π

−π
lnSx(ejω)dω

)

1
2π

∫ π

−π
Sx(ejω)dω

σ2
e

∣
∣
min,N→∞

= exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

The results suggest that σ2
e

∣
∣
min,N→∞

= σ2
v , as expected from the notes.

(d) The following predictor coefficients are found via h = R−1
N rx:

c©P. Schniter, 1999 1

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

r
x

−3 −2 −1 0 1 2 3

2

4

6

8

10

S
x

Figure 1: Nonzero values of rx(k) versus k, and Sx(ejω) versus ω.

hi : N = 3 hi : N = 20

0.8420 0.8985

-0.0088 -0.0101

-0.1562 -0.0111

-0.6052

0.5580

-0.0127

-0.0134

-0.3592

0.3385

-0.0117

-0.0120

-0.2021

0.1923

-0.0090

-0.0089

-0.0957

0.0872

-0.0052

-0.0050

-0.0145

The prediction error variance σ2
e

∣
∣
min,N

= rx(0)− rt
xR

−1
N rx was found to be 1.2656 for N = 3

and 1.0036 for N = 20.

(e) Based on the derivation in (a), re(k) can be written

re(k) = σ2
v

∑

l

qlqk+l where ql = {b0, b1, b2, b3} ∗ {1,−h1,−h2, . . . ,−hN}

since the impulse response of the linear system taking v(n) to e(n) equals the convolution of the

input-coloring impulse response {bi} and the DPCM impulse response {1,−h1,−h2, . . . ,−hN}.

Calculating Se(e
jω) as before, re(k) and Se(e

jω) are plotted in Fig. 2 for the case N = 3 and

Fig. 3 for the case N = 20. Since a white sequence is characterized by (i) a Kronecker-delta

autocorrelation and (ii) a flat PSD, we see that the error sequences are not perfectly white,

though nearly-white for N = 20.

The “flatness” of a spectrum may be quantified using the spectral flatness measure, which in

these cases can be calculated as SFMe = 0.7899 for N = 3 and SFMe = 0.9964 for N = 20.

Since the maximum value of SFM is one, we confirm that the N = 20 error spectrum is, indeed,

very close to white.

(f) Using a 10000-length version of x(n), experimental values of σ2
e

∣
∣
min,N

were found to be

1.2655 for N = 3 and 0.9879 for N = 20. These agree reasonably well with the theo-

c©P. Schniter, 1999 2

−6 −4 −2 0 2 4 6

0

0.5

1

r
e

estimated
calculated

−3 −2 −1 0 1 2 3

0.5

1

1.5

2

2.5

S
e

estimated
calculated

Figure 2: Nonzero values of re(k) versus k, and Se(e
jω) versus ω, for N = 3.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

r
e

estimated
calculated

−3 −2 −1 0 1 2 3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

S
e

estimated
calculated

Figure 3: Nonzero values of re(k) versus k, and Se(e
jω) versus ω, for N = 20.

retical values. In addition, experimental versions of re(k) and Se(e
jω) were determined using

xcorr(x,x,max lag,’unbiased’) and plotted in Fig. 2 and Fig. 3.

2. (a) The mean-squared reconstruction error (MSRE) of the Prediction Error Transmission system

was essentially zero: Matlab returned E = 1.6451× 10−32 .

(b) The MSRE of the PCM system (using L = 32 uniform quantization with ∆ = 6σ2
x/L) was

E = 0.0100 . The choice of ∆ was based on the assumption xmax = 3σ2
x, which was found in

Homework 1 to minimize quantization error variance.

(c) The MSRE of the Predictive Coding system (using L = 32 uniform quantization with ∆ =

6σ2
e/L) was E = 0.0109 , significantly higher than the quantization error variance var(e(n) −

c©P. Schniter, 1999 3

ẽ(n)), calculated as 0.0047 (≈ ∆2/12 = 0.0037).

The reason for this increase was discussed in class: the quantization error becomes amplified

by the filtering in the decoder.

(d) The DPCM system gave E = 0.0047 , essentially equal to the quantization error variance and

significantly less than that of the simple PCM system. This agrees with the derivations in

class, where it was found that the MSRE of DPCM is equal to the quantization error variance.

(e) Though the Prediction Error Transmission system in (a) generated the lowest error, it is

impractical for digital storage/transmission since the transmitted signal is a continuous-valued

quantity.

The PCM system in (b) has the advantage of simplicity, though its MSRE can be reduced by

more complicated systems.

The Predictive Coding system in (c) does not seem useful since it is more complex than PCM

while generating similar MSRE.

The DPCM system in (d) generates the lowest MSRE at the expense of increased complexity

over PCM. (Note, though, that decent gain is possible even with a short N = 3 predictor.)

3. (a) Using the DPCM system with uniform quantization of L reconstruction levels and the sug-

gested values of quantizer stepsize ∆, we obtained the following SNR = 10 log10(σ
2
x/E).

L 2 4 8 16 32 64 128
SNR [dB] 6.6119 12.8394 18.5987 24.1665 29.3978 34.7145 39.9293

(b) Assuming zero-mean Gaussian e(n), we can calculate entropy as in Homework #1.

Hẽ = −
∑

k

Pk log2 Pk with Pk =
1

2
erfc

(

ek/
√

2σ2
e

)

−
1

2
erfc

(

ek+1/
√

2σ2
e

)

where {ek} denote the quantizer decision thresholds. Estimating σ2
e from our experimental

data, we found the following.

L 2 4 8 16 32 64 128
Hẽ [bits] 1.0000 1.9470 2.8049 3.5972 4.4054 5.2715 6.1488

(c) With optimal entropy coding of ẽ(n), the bit rate required for transmission is Hẽ bits/sample.

Using Hẽ from (b), this minimum bit rate was plotted versus SNR from (a) in Fig. 4.

For optimal coding of (nonwhite) x(n), the notes say that SNR = 6.02 R− 10 log10 SFMx, i.e.,

R = (SNR + 10 log10 SFMx) /6.02.

This is also plotted in Fig. 4 (using SFMx = 0.34 from Problem 1).

The following can be observed in Fig. 4:

• For high SNR, the rate for ẽ(n) is approximately 0.3 bits/sample above the optimal, which

is close to what the theory predicts (i.e., 0.255 bits/sample).

• For lower SNRs, the rate for ẽ(n) is farther from optimal than the (simple) theory predicts.

Most likely, this is due to the feedback of (coarsely) quantized predictions, causing σ2
e >

σ2
e

∣
∣
min,N

(which can be verified), hence inefficient coding.

c©P. Schniter, 1999 4

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

SNR

bi
ts

/s
am

pl
e

optimal coding of e~

optimal coding of x

Figure 4: Bit rates for optimal entropy coding of ẽ(n) and optimal coding of x(n).

Matlab code for Problems 1 & 2:

% parameters

M = 10000; % length of input sequence

A = 1; % input coloring: denominator

B = [1,0.9,0.8,0.7]; % input coloring: numerator

sig2_v = 1; % driving noise variance

N = 20; % linear prediction order

L = 32; % uniform quantizer levels

% create input sequence

v = sqrt(sig2_v)*randn(1,M);

x = filter(B,A,v);

% calculate autocorrelation

b = impz(B,A);

rx = xcorr(b,b); rx=rx(:);

lag_x = (length(rx)-1)/2;

sig2_x = rx(lag_x+1);

% calculate power spectrum

N_w = 4096;

w = linspace(-pi,pi,N_w).’;

dw = 2*pi/N_w;

Sx = -sig2_x*ones(N_w,1);

for k=0:lag_x, Sx = Sx + 2*rx(k+lag_x+1)*cos(w*k); end;

sig2_e_min = exp(sum(log(Sx))*dw/2/pi)

SFM_x = exp(sum(log(Sx))*dw/2/pi)/(sum(Sx)*dw/2/pi)

%

figure(1);

subplot(211)

stem([-lag_x:lag_x],rx);

title(’r_x’);

subplot(212)

plot(w,real(Sx));

axis(’tight’)

title(’S_x’);

drawnow;

% calculate optimal predictor

if lag_x>=N,

rx_tmp = rx(lag_x+[1:N+1]);

else

rx_tmp = [rx(lag_x+[1:lag_x+1]); zeros(N-lag_x,1)];

end

R = toeplitz(rx_tmp(1:N));

h = inv(R)*rx_tmp(2:N+1);

sig2_e_minN = rx_tmp(1)-rx_tmp(2:N+1)’*inv(R)*rx_tmp(2:N+1)

% calculate prediction error statistics

q = conv(b,[1;-h]);

re = xcorr(q,q); re=re(:);

lag_e = (length(re)-1)/2;

sig2_e = re(lag_e+1);

c©P. Schniter, 1999 5

Se = -sig2_e*ones(N_w,1);

for k=0:lag_e, Se = Se + 2*re(k+lag_e+1)*cos(w*k); end;

SFM_e = exp(sum(log(Se))*dw/2/pi)/(sum(Se)*dw/2/pi)

% calculate prediction error and estimate statistics

e = conv(x,[1;-h]);

lag_eh = lag_x+N;

reh = xcorr(e,e,lag_eh,’unbiased’); reh=reh(:);

sig2_eh = reh(lag_eh+1)

Seh = -sig2_eh*ones(N_w,1);

for k=0:lag_eh, Seh = Seh + 2*reh(k+lag_eh+1)*cos(w*k); end;

SFM_eh = exp(sum(log(Seh))*dw/2/pi)/(sum(Seh)*dw/2/pi);

%

figure(2);

subplot(211)

stem_hndl1 = stem([-lag_eh:lag_eh],reh,’o’);

hold on; stem_hndl2 = stem([-lag_e:lag_e],re,’r^’); hold off;

title(’r_e’);

axis(’tight’)

legend([stem_hndl1,stem_hndl2],’estimated’,’calculated’);

subplot(212)

plot(w,Seh, w,Se,’r--’);

axis(’tight’)

title(’S_e’);

legend(’estimated’,’calculated’);

drawnow;

%%%%%%%%%%%%%%%%%%%%%

% ENCODING/DECODING %

%%%%%%%%%%%%%%%%%%%%%

% uniform quantizer design for colored input

x_max = 3.0*sqrt(sig2_x);

Delta_x = 2*x_max/L;

Qx = linspace(-x_max,x_max,L+1); Qx(1)=-inf; Qx(L+1)=inf;

Qy = Qx(1:L)+Delta_x/2; Qy(1)=Qx(2)-Delta_x/2;

sig2_qx = Delta_x^2/12;

% PCM

y0 = zeros(1,M);

for k=1:L, y0(find((x>Qx(k))&(x<Qx(k+1)))) = Qy(k); end; % quantize

z0 = x-y0;

E_pcm = (z0*z0’)/length(z0)

% lossless preditive decoding

y1 = zeros(1,N+M); % pad by N

for n=1:M,

y1(n+N) = e(n) + y1(n+N-[1:N])*h; % decode

end;

y1 = y1(N+[1:M]); % unpad by N

z1 = x-y1;

E_lossless = (z1*z1’)/length(z1)

% uniform quantizer design for prediction error

e_max = 3.0*sqrt(sig2_e);

Delta_e = 2*e_max/L;

Qe = linspace(-e_max,e_max,L+1); Qe(1)=-inf; Qe(L+1)=inf;

Qet = Qe(1:L)+Delta_e/2; Qet(1)=Qe(2)-Delta_e/2;

% quantized predictive encoding/decoding

et = zeros(size(e));

for k=1:L, et(find((e>Qe(k))&(e<Qe(k+1)))) = Qet(k); end; % quantize

y2 = zeros(1,N+M); % pad by N

for n=1:M,

y2(n+N) = et(n) + y2(n+N-[1:N])*h; % decode

end;

y2 = y2(N+[1:M]); % unpad by N

z2 = x-y2;

sig2_qe = var(et-e);

E_quant = (z2*z2’)/length(z2)

% DPCM encoding/decoding

y3 = zeros(1,N+M); % pad by N

xt = zeros(1,N+M);

e3 = zeros(1,N+M);

et3 = zeros(1,N+M);

for n=1:M,

xth_cur = xt(n+N-[1:N])*h;

e3(n+N) = x(n)-xth_cur;

et3(n+N) = Qet(max(find(e3(n+N) > Qe)));

xt(n+N) = et3(n+N) + xth_cur;

y3(n+N) = et3(n+N) + y3(n+N-[1:N])*h;

end;

y3 = y3(N+[1:M]); % unpad by N

xt = xt(N+[1:M]);

e3 = e3(N+[1:M]);

et3 = et3(N+[1:M]);

z3 = x-y3;

E_dpcm = (z3*z3’)/length(z3)

Matlab code for Problem 3:

% parameters

M = 10000; % length of input sequence

A = 1; % input coloring: denominator

B = [1,0.9,0.8,0.7]; % input coloring: numerator

sig2_v = 1; % driving noise variance

N = 20; % linear prediction order

L = 2.^[1:7]; % uniform quantizer levels

gamma = [1.6,2,2.3,2.7,3.1,3.4,3.7]; % uniform quantizer design constants

c©P. Schniter, 1999 6

% create input sequence

v = sqrt(sig2_v)*randn(1,M);

x = filter(B,A,v);

% calculate autocorrelation

b = impz(B,A);

rx = xcorr(b,b); rx=rx(:);

lag_x = (length(rx)-1)/2;

sig2_x = rx(lag_x+1);

% calculate power spectrum

N_w = 128;

w = 2*pi*[0:N_w-1].’/N_w;

dw = 2*pi/N_w;

%Sx = zeros(N_w,1);

%for k=-lag_x:lag_x, Sx = Sx + rx(k+lag_x+1)*exp(-sqrt(-1)*w*k); end;

%Sx = real(Sx);

Sx = -sig2_x*ones(N_w,1);

for k=0:lag_x, Sx = Sx + 2*rx(k+lag_x+1)*cos(w*k); end;

if min(Sx)<0, error(’negative PSD!’); end;

SFM_x = exp(sum(log(Sx))*dw/2/pi)/(sum(Sx)*dw/2/pi)

%

figure(1);

subplot(211)

plot([-lag_x:lag_x],rx);

axis(’tight’)

title(’r_x’);

subplot(212)

plot(w,real(Sx));

axis(’tight’)

title(’S_x’);

% calculate optimal predictor

if lag_x>=N,

rx_tmp = rx(lag_x+[1:N+1]);

else

rx_tmp = [rx(lag_x+[1:lag_x+1]); zeros(N-lag_x,1)];

end

R = toeplitz(rx_tmp(1:N));

h = inv(R)*rx_tmp(2:N+1);

sig2_e_minN = rx_tmp(1)-rx_tmp(2:N+1)’*inv(R)*rx_tmp(2:N+1)

%%%%%%%%%%%%%%%%%%%%%

% ENCODING/DECODING %

%%%%%%%%%%%%%%%%%%%%%

SNR_dpcm = zeros(1,length(L));

H_e = zeros(1,length(L));

R_dpcm = zeros(1,length(L));

for l=1:length(L);

% uniform quantizer design for prediction error

e_max = gamma(l)*sqrt(sig2_e_minN);

Delta_e = 2*e_max/L(l);

Qe = linspace(-e_max,e_max,L(l)+1); Qe(1)=-inf; Qe(L(l)+1)=inf;

Qet = Qe(1:L(l))+Delta_e/2; Qet(1)=Qe(2)-Delta_e/2;

sig2_qe = Delta_e^2/12;

% DPCM encoding/decoding

y = zeros(1,N+M); % pad by N

xt = zeros(1,N+M);

e = zeros(1,N+M);

et = zeros(1,N+M);

for n=1:M,

xth_cur = xt(n+N-[1:N])*h;

e(n+N) = x(n)-xth_cur;

et(n+N) = Qet(max(find(e(n+N) > Qe)));

xt(n+N) = et(n+N) + xth_cur;

y(n+N) = et(n+N) + y(n+N-[1:N])*h;

end;

y = y(N+[1:M]); % unpad by N

xt = xt(N+[1:M]);

e = e(N+[1:M]);

et = et(N+[1:M]);

z = x-y;

SNR_dpcm(l) = 10*log10((x*x’)/(z*z’));

% quantized-prediction-error entropy

sig2_eh = (e*e’)/M;

H_e(l) = calc_entropy(Qe,sig2_eh);

end;

SNR_dpcm

H_e

figure(2);

subplot(111);

Rmin = (SNR_dpcm + 10*log10(SFM_x))/6.02;

plot(SNR_dpcm,H_e,’ro-’, SNR_dpcm,Rmin,’--’);

legend(’optimal coding of e^~’,...

’optimal coding of x’,0);

xlabel(’SNR’); ylabel(’bits/sample’);

c©P. Schniter, 1999 7

