
EE-597 Notes – Quantization

Phil Schniter

June 11, 2004

1 Quantization

• Given a continuous-time and continuous-amplitude signal x(t), processing and storage by modern
digital hardware requires discretization in both time and amplitude, as accomplished by an analog-
to-digital converter (ADC).

• We will typically work with discrete-time quantities x(n) (indexed by “time” variable n) which we
assume were sampled ideally and without aliasing.

• Here we discuss various ways of discretizing the amplitude of x(n) so that it may be represented
by a finite set of numbers. This is generally a lossy operation, and so we analyze the performance
of various quantization schemes and design quantizers that are optimal under certain assumptions.
A good reference for much of this material is [1].

1.1 Memoryless Scalar Quantization

• Memoryless scalar quantization of continuous-amplitude variable x is the mapping of x to output
yk when x lies within interval

Xk := {xk < x ≤ xk+1}, k = 1, 2, . . . , L.

The xk are called decision thresholds, and the number of quantization levels is L. The quantization
operation is written y = Q(x).

• When 0 ∈ {y1, . . . , yL}, quantizer is called midtread, else midrise.

• Quantization error defined q := x − Q(x)

• If x is a r.v. with pdf px(·) and likewise for q, then quantization error variance is

σ2
q = E{q2} =

∫ ∞

−∞

q2pq(q)dq (1)

=

∫ ∞

−∞

(x − Q(x))2 px(x)dx

=

L∑

k=1

∫ xk+1

xk

(x − yk)2px(x)dx (2)

• A special quantizer is the uniform quantizer :

yk+1 − yk = ∆, for k = 1, 2, . . . , L − 1,

xk+1 − xk = ∆, for finite xk, xk+1,

−x1 = xL+1 = ∞.

c©P. Schniter, 1999 1

(a) (b)

q(x)q(x)

x

xx

x

Q(x)Q(x)

xkxk

yk yk

Figure 1: (a) Uniform and (b) non-uniform quantization Q(x) and quantization error q(x).

• Uniform Quantizer Performance for large L: For bounded input x ∈ (−xmax, xmax), uniform quan-
tization with x2 = −xmax + ∆ and xL = xmax − ∆, and with y1 = x2 − ∆/2 and yk = xk + ∆/2
(for k > 1), the quantization error is well approximated by a uniform distribution for large L:

pq(q) =

{

1/∆ |q| ≤ ∆/2,

0 else.

Why?

– As L → ∞, px(x) is constant over Xk for any k. Since q = x − yk
∣
∣
x∈Xk

, it follows that

pq(q|x ∈ Xk) will have uniform distribution for any k.

– With x ∈ (−xmax, xmax) and with xk and yk as specified, q ∈ (−∆/2, ∆/2] for all x (see Fig. 2).
Hence, for any k,

pq(q|x ∈ Xk) =

{

1/∆ q ∈ (−∆/2, ∆/2],

0 else.

∆

∆/2

−∆/2

x

−xmax −xmax

q

Figure 2: Quantization error for bounded input and midpoint yk.

c©P. Schniter, 1999 2

In this case, from (1),

σ2
q =

∫ ∆/2

−∆/2

q2 1

∆
dq =

1

∆

[
q3

3

]∆/2

−∆/2

=
1

∆

(
∆3

3 · 8
+

∆3

3 · 8

)

=
∆2

12
. (3)

If we use R bits to represent each discrete output y and choose L = 2R, then

σ2
q =

∆2

12
=

1

12

(
2xmax

L

)2

=
1

3
x2

max 2−2R

and

SNR [dB] = 10 log10

(
σ2

x

σ2
q

)

= 10 log10

(

3
σ2

x

x2
max

22R

)

= 6.02R − 10 log10

(

3
x2

max

σ2
x

)

.

Recall that the expression above is only valid for σ2
x small enough to ensure x ∈ (−xmax, xmax). For

larger σ2
x, the quantizer overloads and the SNR decreases rapidly.

Example 1.1 (SNR for Uniform Quantization of Uniformly-Distributed Input):
For uniformly distributed x, can show xmax/σx =

√
3, so that SNR = 6.02R.

Example 1.2 (SNR for Uniform Quantization of Sinusoidal Input):
For a sinusoidal x, can show xmax/σx =

√
2, so that SNR = 6.02R + 1.76. (Interesting since sine waves are

often used as test signals).

Example 1.3 (SNR for Uniform Quantization of Gaussian Input):
Though not truly bounded, Gaussian x might be considered as approximately bounded if we choose xmax = 4σx

and ignore residual clipping. In this case SNR = 6.02R − 7.27.

1.2 MSE-Optimal Memoryless Scalar Quantization

• Though uniform quantization is convenient for implementation and analysis, non-uniform quanti-
zation yeilds lower σ2

q when px(·) is non-uniformly distributed. By decreasing |q(x)| for frequently
occuring x (at the expense of increasing |q(x)| for infrequently occuring x), the average error power
can be reduced.

• Lloyd-Max Quantizer: MSE-optimal thresholds {xk} and outputs {yk} can be determined given an
input distribution px(·), and the result is the Lloyd-Max quantizer. Necessary conditions on {xk}
and {yk} are

∂σ2
q

∂xk
= 0 for k ∈ {2, . . . , L} and

∂σ2
q

∂yk
= 0 for k ∈ {1, . . . , L}.

Using (2), ∂/∂b
∫ b

a
f(x)dx = f(b), ∂/∂a

∫ b

a
f(x)dx = −f(a), and above,

∂σ2
q

∂xk
= (xk − yk−1)

2px(xk) − (xk − yk)2px(xk) = 0 ⇒ x?
k =

y?
k+y?

k−1

2 , k ∈ {2 . . . L},
x?

1 = −∞, x?
L+1 = ∞,

(4)

∂σ2
q

∂yk
= 2

∫ xk+1

xk

(x − yk)px(x)dx = 0 ⇒ y?
k =

∫ x?
k+1

x?
k

xpx(x)dx
∫ x?

k+1

x?
k

px(x)dx
, k ∈ {1 . . .L} (5)

It can be shown that above are sufficient for global MMSE when ∂2 log px(x)/∂x2 ≤ 0, which holds
for uniform, Gaussian, and Laplace pdfs, but not Gamma.

Note:

c©P. Schniter, 1999 3

– optimum decision thresholds are halfway between neighboring output values,

– optimum output values are centroids of the pdf within the appropriate interval, i.e., are given
by the conditional means

y?
k = E{x|x ∈ X ?

k } =

∫

xpx(x|x ∈ X ?
k)dx =

∫

x
px(x, x ∈ X ?

k)

Pr(x ∈ X ?
k)

dx, =

∫ x?
k+1

x?
k

xpx(x)dx
∫ x?

k+1

x?
k

px(x)dx
.

Iterative Procedure to Find {x?
k} and {y?

k}:

1. Choose ŷ1.

2. For k = 1, . . . , L−1,
given ŷk and x̂k, solve (5) for x̂k+1,
given ŷk and x̂k+1, solve (4) for ŷk+1.

end;

3. Compare ŷL to yL calculated from (5) based on x̂L and xL+1 = ∞. Adjust ŷ1 accordingly,
and go to step 1.

• Lloyd-Max Performance for large L: As with the uniform quantizer, can analyze quantization error
performance for large L. Here, we assume that

– the pdf px(x) is constant over x ∈ Xk for k ∈ {1, . . . , L},

– the input is bounded, i.e., x ∈ (−xmax, xmax) for some (potentially large) xmax.

So with assumption
px(x) = px(yk) for x, yk ∈ Xk

and definition
∆k := xk+1 − xk,

we can write

Pk := Pr{x ∈ Xk} = px(yk)∆k

(

where we require
∑

Pk = 1
)

and thus, from (2), σ2
q becomes

σ2
q =

L∑

k=1

Pk

∆k

∫ xk+1

xk

(x − yk)2dx. (6)

For MSE-optimal {yk}, know

0 =
∂σ2

q

∂yk
= 2

Pk

∆k

∫ xk+1

xk

(x − yk)dx ⇒ y?
k =

xk + xk+1

2
,

which is expected since the centroid of a flat pdf over Xk is simply the midpoint of Xk. Plugging
y?

k into expression (6),

σ2
q =

L∑

k=1

Pk

3∆k

[
(x − xk/2 − xk+1/2)3

]xk+1

xk

=

L∑

k=1

Pk

3∆k

[
(xk+1/2 − xk/2)3 − (xk/2 − xk+1/2)3

]

=

L∑

k=1

Pk

3∆k
· 2

(
∆k

2

)3

=
1

12

L∑

k=1

Pk∆2
k. (7)

c©P. Schniter, 1999 4

Note that for uniform quantization (∆k = ∆), the expression above reduces to the one derived
earlier.

Now we minimize σ2
q w.r.t. {∆k}. The trick here is to define

αk := 3

√

px(y?
k)∆k so that σ2

q =
1

12

L∑

k=1

px(y?
k)∆3

k =
1

12

L∑

k=1

α3
k.

For px(x) constant over Xk and yk ∈ Xk,

L∑

k=1

αk =
L∑

k=1

3

√

px(y?
k)∆k

∣
∣
∣
∣
y?

k
=

xk+xk+1
2

=

∫ xmax

−xmax

3
√

px(x)dx = Cx (a known constant),

we have the following constrained optimization problem:

min
{αk}

∑

k

α3
k s.t.

∑

k

αk = Cx.

This may be solved using Lagrange multipliers.

Aside 1.1 (Optimization via Lagrange Multipliers):
Consider the problem of minimizing N-dimensional real-valued cost function J(x), where x = (x1, x2, . . . , xN)t,
subject to M <N real-valued equality constraints fm(x) = am, m = 1, . . . , M . This may be converted into an
unconstrained optimization of dimension N +M by introducing additional variables λ = (λ1, . . . , λM)t known
as Lagrange multipliers. The uncontrained cost function is

Ju(x, λ) = J(x) +
X

m

λm

`

fm(x) − am

´

,

and necessary conditions for its minimization are

∂

∂x
Ju(x, λ) = 0 ⇔ ∂

∂x
J(x) +

X

m

λm

∂

∂x
fm(x) = 0 (8)

∂

∂λ
Ju(x, λ) = 0 ⇔ fm(x) = am for m = 1, . . . , M. (9)

The typical procedure used to solve for optimal x is the following:

1. Equations for xn, n = 1, . . . , N , in terms of {λm} are obtained from (8).

2. These N equations are used in (9) to solve for the M optimal λm.

3. The optimal {λm} are plugged back into the N equations for xn, yielding optimal {xn}.

Necessary conditions are

∀`,
∂

∂α`

(
∑

k

α3
k + λ

(∑

k

αk − Cx

)
)

= 0 ⇒ λ = −3α2
` ⇒ α` =

√

−λ/3

∂

∂λ

(
∑

k

α3
k + λ

(∑

k

αk − Cx

)
)

= 0 ⇒
∑

k

αk = Cx,

which can be combined to solve for λ:

L∑

k=1

√

−
λ

3
= Cx ⇒ λ = −3

(
Cx

L

)2

.

Plugging λ back into the expression for α`, we find

α?
` = Cx/L, ∀ `.

c©P. Schniter, 1999 5

Using the definition of α`, the optimal decision spacing is

∆?
k =

Cx

L 3
√

px(y?
k)

=

∫ xmax

−xmax

3
√

px(x)dx

L 3
√

px(y?
k)

,

and the minimum quantization error variance is

σ2
q

∣
∣
min

=
1

12

∑

k

px(y?
k)∆? 3

k =
1

12

∑

k

px(y?
k)

(∫ xmax

−xmax

3
√

px(x)dx
)3

L3px(y?
k)

=
1

12L2

(∫ xmax

−xmax

3
√

px(x)dx

)3

.

An interesting observation is that α? 3
` , the `th interval’s optimal contribution to σ2

q , is constant
over `.

1.3 Entropy-Coding

• Binary Scalar Encoding: Previously we have focused on the memoryless scalar quantizer y = Q(x),
where y takes a value from a set of L reconstruction levels. By coding each quantizer output in
binary format, we transmit (store) the information at a rate (cost) of

R = dlog2 Le bits/sample.

If, for example, L = 8, then we transmit at 3 bits/sample.

Say we can tolerate a bit more quantization error, e.g., as results from L = 5. We hope that this
reduction in fidelity reduces our transmission requirements, but with this simple binary encoding
scheme we still require R = 3 bits/sample!

• Idea—Block Coding: Let’s assign a symbol to each block of 3 consecutive quantizer outputs. We

need a symbol alphabet of size ≥ 53 = 125, which is adequately represented by a 7-bit word
(27 = 128). Transmitting these words requires only 7/3 = 2.33 bits/sample!

• Idea—Variable Length Coding: Assume some of the quantizer outputs occur more frequently than
others. Could we come up with an alphabet consisting of short words for representing frequent
outputs and longer words for infrequent outputs that would have a lower average transmission
rate?

Example 1.4 (Variable Length Coding):

Consider the quantizer with L = 4 and output probabilities indicated on
the right. Straightforward 2-bit encoding requires average bit rate of 2
bits/sample, while the variable length code on the right gives average
R =

P

k Pknk = 0.6·1 + 0.25·2 + 0.1·3 + 0.05·3 = 1.55 bits/sample.

output Pk code

y1 0.60 0
y2 0.25 01
y3 0.10 011
y4 0.05 111

• (Just enough information about) Entropy:

Q: Given an arbitrarily complex coding scheme, what is the minimum bits/sample required to
transmit (store) the sequence {y(n)}?

A: When random process {y(n)} is i.i.d., the minimum average bit rate is

Rmin = Hy + ε,

c©P. Schniter, 1999 6

where Hy is the entropy of random variable y(n) in bits:

Hy = −

L∑

k=1

Pk log2 Pk,

and ε is an arbitrarily small positive constant [2], [3].

Notes:

– Entropy obeys 0 ≤ Hy ≤ log2 L. The left inequality occurs when Pk = 1 for some k, while the
right inequality occurs when Pk = 1/L for every k.

– The term entropy refers to the average information of a single random variable, while the term
entropy rate refers to a sequence of random variables, i.e., a random process.

– When {y(n)} is not independent (the focus of later sections), a different expression for Rmin

applies.

– Though the minimum rate is well specified, the construction of a coding scheme which always
achieves this rate is not.

Example 1.5 (Entropy of Variable Length Code):

Recalling the setup of Example 1.4, we find that Hy = −
`

0.6 log
2
0.6 +

0.25 log
2
0.25 + 0.1 log

2
0.1 + 0.05 log

2
0.05

´

= 1.49 bits. Assuming
i.i.d. {y(n)}, we have Rmin = 1.49 bits/sample. Compare to the variable
length code on the right which gave R = 1.55 bits/sample.

output Pk code

y1 0.60 0
y2 0.25 01
y3 0.10 011
y4 0.05 111

• Huffman Encoding: Given quantizer outputs yk or fixed-length blocks of outputs (yj yk y`), the
Huffman procedure constructs variable length codes that are optimal in certain respects [3]. For
example, when the probabilities of {Pk} are powers of 1/2 (and {y(n)} is i.i.d.), the entropy rate
of a Huffman encoded output attains Rmin.

Aside 1.2 (Huffman Procedure (Binary Case)):

1. Arrange ouput probabilities Pk in decreasing order and con-
sider them as leaf nodes of a tree.

2. While there exists more than one node:

– Merge the two nodes with smallest probability to form
a new node whose probability equals the sum of the
two merged nodes.

– Arbitrarily assign 1 and 0 to the two branches of the
merging pair.

3. The code assigned to each output is obtained by reading
the branch bits sequentially from root note to leaf node.

0.60

0.25

0.10

0.05

0.15

0.40

1.00
0

0

0

1

1

1

0.5

0.25

0.125

0.125

0.25

0.5

1.00
0

0

0

1

1

1

Example 1.6 (Huffman Encoder Attaining Rmin):
In Aside 1.2, a Huffman code was constructed for the output probabili-
ties listed on the right. Here Hy = −

`

0.5 log
2
0.5 + 0.25 log

2
0.25 + 2 ·

0.125 log
2
0.125

´

= 1.75 bits, so that Rmin = 1.75 bits/sample (with the
i.i.d. assumption). Since the average bit rate for the Huffman code is also
R = 0.5·1 + 0.25·2 + 0.125·3 + 0.125·3 = 1.75 bits/sample, Huffman
encoding attains Rmin for this output distribution.

output Pk code

y1 0.5 0
y2 0.25 01
y3 0.125 011
y4 0.125 111

c©P. Schniter, 1999 7

1.4 Quantizer Design for Entropy Coded Sytems

• Say that we are designing a system with a memoryless quantizer followed by an entropy coder, and
our goal is to minimize the average transmission rate for a given σ2

q (or vice versa). Is it optimal
to cascade a σ2

q -minimizing (Lloyd-Max) quantizer with a rate-minimizing code? In other words,
what is the optimal memoryless quantizer if the quantized outputs are to be entropy coded?

• A Compander Formulation:

To determine the optimal quantizer,

1. consider a companding system: a memoryless nonlinearity c(x) followed by uniform quantizer,

2. find c(x) minimizing entropy Hy for a fixed error variance σ2
q .

x

2xmax

L

∆k

c(x)

Figure 3: Compander curve: nonuniform input regions mapped to uniform output regions (for subsequent uniform
quantization).

• First we must express σ2
q and Hy in terms of c(x). Fig. 3 suggests that, for large L, the slope

c′(x) := dc(x)/dx obeys

c′(x)
∣
∣
x∈Xk

=
2xmax/L

∆k
,

so that we may write

∆k =
2xmax

Lc′(x)

∣
∣
∣
∣
x∈Xk

.

Assuming large L, the σ2
q -approximation (7) can be transformed as follows.

σ2
q =

1

12

L∑

k=1

Pk∆2
k

=
x2

max

3L2

L∑

k=1

Pk

c′(x)2

∣
∣
∣
∣
x∈Xk

=
x2

max

3L2

L∑

k=1

px(x)

c′(x)2
∆k

∣
∣
∣
∣
x∈Xk

since Pk = px(x)
∣
∣
x∈Xk

∆k for large L

=
x2

max

3L2

∫ xmax

−xmax

px(x)

c′(x)2
dx.

c©P. Schniter, 1999 8

Similarly,

Hy = −
L∑

k=1

Pk log2 Pk

= −
L∑

k=1

px(x)∆k log2

(
px(x)∆k

)∣
∣
x∈Xk

= −

L∑

k=1

px(x)∆k log2 px(x)
∣
∣
x∈Xk

−

L∑

k=1

px(x)∆k log2 ∆k
∣
∣
x∈Xk

= −

∫ xmax

−xmax

px(x) log2 px(x)dx

︸ ︷︷ ︸

hx:“differential entropy”

−

∫ xmax

−xmax

px(x) log2

2xmax

Lc′(x)
︸ ︷︷ ︸

∆k

dx

= hx − log2

2xmax

L

∫ xmax

−xmax

px(x)dx

︸ ︷︷ ︸

=1

+

∫ xmax

−xmax

px(x) log2 c′(x)dx (10)

= constant +

∫ xmax

−xmax

px(x) log2 c′(x)dx

• Entropy-Minimizing Quantizer: Our goal is to choose c(x) which minimizes the entropy rate Hy

subject to fixed error variance σ2
q . We employ a Lagrange technique again, minimizing the cost

∫ xmax

−xmax
px(x) log2 c′(x)dx under the constraint that the quantity

∫ xmax

−xmax
px(x)

(
c′(x)

)−2
dx equals a

constant C. This yields the unconstrained cost function

Ju

(
c′(x), λ

)
=

∫ xmax

−xmax

[

px(x) log2 c′(x) + λ
(

px(x)
(
c′(x)

)−2
− C

)]

︸ ︷︷ ︸

φ(c′(x),λ)

dx, (11)

with scalar λ, and the unconstrained optimization problem becomes

min
c′(x),λ

Ju(c′(x), λ).

The following technique is common in variational calculus [4]. Say a?(x) minimizes a (scalar) cost
J
(
a(x)

)
. Then for any (well-behaved) variation η(x) from this optimal a?(x), we must have

∂

∂ε
J
(
a?(x) + εη(x)

)
∣
∣
∣
∣
ε=0

= 0

where ε is a scalar. Applying this principle to our optimization problem, we search for c′(x) such
that

∀η(x),
∂

∂ε
Ju

(
c′(x) + εη(x), λ

)
∣
∣
∣
∣
ε=0

= 0.

From (11) we find (using log2 a = log2 e · loge a)

∂Ju

∂ε

∣
∣
∣
∣
ε=0

=

∫ xmax

−xmax

∂

∂ε
φ
(
c′(x) + εη(x), λ

)
∣
∣
∣
∣
ε=0

dx

=

∫ xmax

−xmax

∂

∂ε

[

px(x) log2(e) loge

(

c′(x) + εη(x)
)

+ λ
(

px(x)
(
c′(x) + εη(x)

)−2
− C

)]∣
∣
∣
∣
ε=0

dx

=

∫ xmax

−xmax

[

log2(e) px(x)
(

c′(x) + εη(x)
)−1

η(x) − 2λpx(x)
(

c′(x) + εη(x)
)−3

η(x)
]∣
∣
∣
∣
ε=0

dx

=

∫ xmax

−xmax

px(x)
(
c′(x)

)−1[
log2(e) − 2λ

(
c′(x)

)−2]
η(x) dx

c©P. Schniter, 1999 9

and to allow for any η(x) we require

log2(e) − 2λ
(
c′(x)

)−2
= 0 ⇔ c′(x) =

√

2λ

log2 e
︸ ︷︷ ︸

a constant!

.

Applying the boundary conditions,

{

c(xmax) = xmax

c(−xmax) = −xmax

}

→ c(x) = x .

Thus, for large-L, the quantizer that minimizes entropy rate Hy for a given quantization error
variance σ2

q is the uniform quantizer.

Plugging c(x) = x into (10), the rightmost integral disappears and we have

Hy
∣
∣
uniform

= hx − log2

2xmax

L
︸ ︷︷ ︸

∆

,

and using the large-L uniform quantizer error variance approximation (3),

Hy
∣
∣
uniform

= hx −
1

2
log2

(
12σ2

q

)
.

It is interesting to compare this result to the information-theoretic minimal average rate for trans-
mission of a continuous-amplitude memoryless source x of differential entropy hx at average distor-
tion σ2

q [1, 2]:

Rmin = hx −
1

2
log2

(
2πe σ2

q

)
.

Comparing the previous two equations, we find that (for a continous-amplitude memoryless source)
uniform quantization prior to entropy coding requires

1

2
log2

(πe

6

)

≈ 0.255 bits/sample

more than the theoretically optimum transmission scheme, regardless of the distribution of x. Thus,
0.255 bits/sample (or ∼ 1.5 dB using the 6.02R relationship) is the price paid for memoryless
quantization.

1.5 Adaptive Quantization

• Previously have considered the case of stationary source processes, though in reality the source signal
may be highly non-stationary. For example, the variance, pdf, and/or mean may vary significantly
with time.

• Here we concentrate on the problem of adapting uniform quantizer stepsize ∆ to a signal with
unknown variance. This is accomplished by estimating the input variance σ̂x(n) and setting the
quantizer stepsize appropriately:

∆(n) =
2φx σ̂x(n)

L
.

Here φx is a constant that depends on the distribution of the input signal x whose function is to
prevent input values greater than σx(n) from being clipped by the quantizer (see Fig. 4); comparing
to non-adaptive step size relation ∆ = 2xmax/L, we see that φxσ̂x(n) ∼ xmax.

c©P. Schniter, 1999 10

x

x

Q(x)

1

φxσ̂x

px(x)

σ̂x

∆ = 2φxσ̂x

L

Figure 4: Adaptive quantization stepsize ∆(n) = 2φxσ̂x/L

• As long as the reconstruction levels {yk} are the same at encoder and decoder, the actual values
chosen for quantizer design are arbitrary. Assuming integer values as in Fig. 4, the quantization
rule becomes

y(n) =







⌈
x(n)
∆(n)

⌉

− 1
2 midrise,

⌈
x(n)
∆(n) −

1
2

⌉

midtread.
(12)

• AQF and AQB: Fig. 5 shows two structures for stepsize adaptation: (a) adaptive quantization

with forward estimation (AQF) and (b) adaptive quantization with backward estimation (AQB).
The advantage of AQF is that variance estimation may be accomplished more accurately, as it
is operates directly on the source as opposed to a quantized (noisy) version of the source. The
advantage of AQB is that the variance estimates do not need to be transmitted as side information
for decoding. In fact, practical AQF encoders transmit variance estimates only occasionally, e.g.,
once per block.

(a) (b)

x(n) x(n) y(n)y(n)y(n) y(n)x̃(n) x̃(n)

Q QQ−1 Q−1

Variance

Estimator

Variance

Estimator

Variance

Estimator
channel

channel channel

Figure 5: (a) AQF and (b) AQB.

• Block Variance Estimation: When operating on finite blocks of data, the structures in Fig. 5

c©P. Schniter, 1999 11

perform variance estimation as follows:

Block AQF: σ̂2
x(n) =

1

N

N∑

i=1

x2(n − i)

Block AQB: σ̂2
x(n) =

1

N

N∑

i=1

(

y(n − i) · ∆(n − i)
)2

N is termed the learning period and its choice may significantly impact quantizer SNR performance:
choosing N too large prevents the quantizer from adapting to the local statistics of the input, while
choosing N too small results in overly noisy AQB variance estimates and excessive AQF side
information. Fig. 6 demonstrates these two schemes for two choices of N .

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) AQF, N=128

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) AQB, N=128

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) AQF, N=32

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) AQB, N=32

Figure 6: Block AQF and AQB estimates of σx(n) superimposed on |x(n)| for N = 128, 32. SNR acheived: (a)
22.6 dB, (b) 28.8 dB, (c) 21.2 dB, and (d) 28.8 dB.

c©P. Schniter, 1999 12

• Recursive Variance Estimation: The recursive method of estimating variance is as follows

Recursive AQF: σ̂2
x(n) = ασ̂2

x(n − 1) + (1 − α)x2(n − 1)

Recursive AQB: σ̂2
x(n) = ασ̂2

x(n − 1) + (1 − α)
(

y(n − 1) · ∆(n − 1)
)2

.

where α is a forgetting factor in the range 0 < α < 1 and typically near to 1.

This leads to an exponential data window, as can be seen below. Plugging the expression for
σ̂2

x(n − 1) into that for σ̂2
x(n),

σ̂2
x(n) = α

(

ασ̂2
x(n − 2) + (1 − α)x2(n − 2)

)

+ (1 − α)x2(n − 1)

= α2σ̂2
x(n − 2) + (1 − α)

(

x2(n − 1) + αx2(n − 2)
)

.

Then plugging σ̂2
x(n − 2) into the above,

σ̂2
x(n) = α2

(

ασ̂2
x(n − 3) + (1 − α)x2(n − 3)

)

+ (1 − α)
(

x2(n − 1) + αx2(n − 2)
)

= α3σ̂2
x(n − 3) + (1 − α)

(

x2(n − 1) + αx2(n − 2) + α2x2(n − 3)
)

.

Continuing this process N times, we arrive at

σ̂2
x(n) = (1 − α)

N∑

i=1

αi−1x2(n − i) + αN σ̂2
x(n − N).

Taking the limit as N → ∞, α < 1 ensures that

σ̂2
x(n) = (1 − α)

∞∑

i=1

αi−1x2(n − i).

References

[1] N.S. Jayant and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice-Hall, 1984.

[2] T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ: Prentice-Hall, 1971.

[3] T.A. Cover and J.A. Thomas, Elements of Information Theory, New York, NY: Wiley, 1991.

[4] A.P. Sage and C.C. White, III, Optimum Systems Control, 2nd Ed., Englewood Cliffs, NJ: Prentice-
Hall, 1977.

c©P. Schniter, 1999 13

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) AQF, lambda=0.9

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) AQB, lambda=0.9

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) AQF, lambda=0.99

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) AQB, lambda=0.99

Figure 7: Exponential AQF and AQB estimates of σx(n) superimposed on |x(n)| for λ = 0.9, 0.99. (a) 20.5 dB,
(b) 28.0 dB, (c) 22.2 dB, (d) 24.1 dB.

c©P. Schniter, 1999 14

