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During the last decade, CD-quality digital audio has essentially
replaced analog audio. Emerging digital audio applications for net-
work, wireless, and multimedia computing systems face a series of
constraints such as reduced channel bandwidth, limited storage ca-
pacity, and low cost. These new applications have created a de-
mand for high-quality digital audio delivery at low bit rates. In
response to this need, considerable research has been devoted to
the development of algorithms for perceptually transparent coding
of high-fidelity (CD-quality) digital audio. As a result, many algo-
rithms have been proposed, and several have now become inter-
national and/or commercial product standards. This paper reviews
algorithms for perceptually transparent coding of CD-quality dig-
ital audio, including both research and standardization activities.

This paper is organized as follows. First, psychoacoustic princi-
ples are described, with the MPEG psychoacoustic signal analysis
model 1 discussed in some detail. Next, filter bank design issues
and algorithms are addressed, with a particular emphasis placed
on the modified discrete cosine transform, a perfect reconstruction
cosine-modulated filter bank that has become of central importance
in perceptual audio coding. Then, we review methodologies that
achieve perceptually transparent coding of FM- and CD-quality
audio signals, including algorithms that manipulate transform
components, subband signal decompositions, sinusoidal signal
components, and linear prediction parameters, as well as hybrid
algorithms that make use of more than one signal model. These
discussions concentrate on architectures and applications of those
techniques that utilize psychoacoustic models to exploit efficiently
masking characteristics of the human receiver. Several algorithms
that have become international and/or commercial standards
receive in-depth treatment, including the ISO/IEC MPEG family
(�1, �2, �4), the Lucent Technologies PAC/EPAC/MPAC, the
Dolby1 AC-2/AC-3, and the Sony ATRAC/SDDS algorithms. Then,
we describe subjective evaluation methodologies in some detail,
including the ITU-R BS.1116 recommendation on subjective
measurements of small impairments. This paper concludes with a
discussion of future research directions.
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I. INTRODUCTION

Audio codingor audio compressionalgorithms are used
to obtain compact digital representations of high-fidelity
(wideband) audio signals for the purpose of efficient trans-
mission or storage. The central objective in audio coding is
to represent the signal with a minimum number of bits while
achieving transparent signal reproduction, i.e., generating
output audio that cannot be distinguished from the original
input, even by a sensitive listener (“golden ears”). This
paper gives a review of algorithms for transparent coding of
high-fidelity audio.

The introduction of the compact disc (CD) in the early
1980’s [1] brought to the fore all of the advantages of digital
audio representation, including unprecedented high fidelity,
dynamic range, and robustness. These advantages, however,
came at the expense of high data rates. Conventional CD
and digital audio tape (DAT) systems are typically sampled
at either 44.1 or 48 kHz using pulse code modulation (PCM)
with a 16-bit sample resolution. This results in uncom-
pressed data rates of 705.6/768 kbits per second (kb/s) for a
monaural channel, or 1.41/1.54 Mbits per second (Mb/s) for
a stereo pair at 44.1/48 kHz, respectively. Although high,
these data rates were accommodated successfully in first
generation digital audio applications such as CD and DAT.
Unfortunately, second-generation multimedia applications
and wireless systems in particular are often subject to
bandwidth and cost constraints that are incompatible with
high data rates. Because of the success enjoyed by the
first generation, however, end users have come to expect
“CD-quality” audio reproduction from any digital system.
Therefore, new network and wireless multimedia digital
audio systems must reduce data rates without compromising
reproduction quality. These and other considerations have
motivated considerable research during the last decade
toward formulation of compression schemes that can satisfy
simultaneously the conflicting demands of high compression
ratios and transparent reproduction quality for high-fidelity
audio signals [2]–[11]. As a result, several standards have
been developed [12]–[15], particularly in the last five years
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Fig. 1. Generic perceptual audio encoder.

[16]–[19], and several are now being deployed commercially
[359], [362], [365], [367] (Table 4).

A. Generic Perceptual Audio Coding Architecture

This review considers several classes of analysis–syn-
thesis data compression algorithms, including those that
manipulate transform components, time-domain sequences
from critically sampled banks of bandpass filters, sinusoidal
signal components, linear predictive coding (LPC) model
parameters, or some hybrid parametric set. Within each
algorithm class, either lossless or lossy compression is
possible. Alosslessor noiselesscoding system is able to
reconstruct perfectly the samples of the original signal from
the coded (compressed) representation. In contrast, a coding
scheme incapable of perfect reconstruction from the coded
representation is denotedlossy. For most audio program
material, lossy schemes offer the advantage of lower bit
rates (e.g., less than 1 bit per sample) relative to lossless
schemes (e.g., 10 bits per sample). Although the enormous
capacity of new storage media such as digital versatile disc
(DVD) can accommodatelosslessaudio coding [20], [21],
the research interest and hence all of the algorithms we
describe arelossycompression schemes that seek to exploit
the psychoacoustic principles described in Section II. Natu-
rally, there is a debate over the quality limitations associated
with lossy compression. In fact, some experts believe that
uncompresseddigital CD-quality audio (44.1 kHz/16 bit) is
intrinsically inferior to the analog original. They contend
that sample rates above 55 kHz and word lengths greater
than 20 bits [21] are necessary to achieve transparency in
the absence of any compression. The latter debate is beyond
the scope of this review.

Before considering different classes of audio coding al-
gorithms, we note the architectural similarities that charac-
terize most perceptual audio coders. The lossy compression
systems described throughout the remainder of this review
achieve coding gain by exploiting bothperceptual irrelevan-
ciesandstatistical redundancies. Most of these algorithms
are based on the generic architecture shown in Fig. 1. The
coders typically segment input signals into quasistationary
frames ranging from 2 to 50 ms in duration. Then, a time-fre-
quency analysis section estimates the temporal and spectral
components on each frame. Often, the time-frequency map-
ping is matched to the analysis properties of the human audi-
tory system, although this is not always the case. Either way,
the ultimate objective is to extract from the input audio a set

of time-frequency parameters that is amenable to quantiza-
tion and encoding in accordance with a perceptual distortion
metric. Depending on overall system objectives and design
philosophy, the time-frequency analysis section might con-
tain a:

• unitary transform;
• time-invariant bank of critically sampled, uniform, or

nonuniform bandpass filters;
• time-varying (signal-adaptive) bank of critically sam-

pled, uniform, or nonuniform bandpass filters;
• harmonic/sinusoidal analyzer;
• source-system analysis (LPC/multipulse excitation);
• hybrid transform/filter bank/sinusoidal/LPC signal an-

alyzer.
The choice of time-frequency analysis methodology always
involves a fundamental tradeoff between time and frequency
resolution requirements. Perceptual distortion control is
achieved by a psychoacoustic signal analysis section that
estimates signal masking power based on psychoacoustic
principles (see Section II). The psychoacoustic model
delivers masking thresholds that quantify the maximum
amount of distortion at each point in the time-frequency
plane such that quantization of the time-frequency parame-
ters does not introduce audible artifacts. The psychoacoustic
model therefore allows the quantization and encoding sec-
tion to exploit perceptual irrelevancies in the time-frequency
parameter set. The quantization and encoding section
can also exploit statistical redundancies through classical
techniques such as differential pulse code modulation
(DPCM) or adaptive DPCM (ADPCM). Quantization can
be uniform or probability density function (pdf)-optimized
(Lloyd–Max), and it might be performed on either scalar
or vector data (VQ). Once a quantized compact parametric
set has been formed, remaining redundancies are typically
removed through noiseless run-length (RL) and entropy
(e.g., Huffman [22], arithmetic [23], or Lempel, Ziv, and
Welch (LZW) [24], [25]) coding techniques. Since the
output of the psychoacoustic distortion control model is
signal dependent, most algorithms are inherently variable
rate. Fixed channel rate requirements are usually satisfied
through buffer feedback schemes, which often introduce
encoding delays.

The study of perceptual entropy (PE) suggests that trans-
parent coding is possible in the neighborhood of 2 bits per
sample [117] for most for high-fidelity audio sources (88
kpbs given 44.1-kHz sampling). The lossy perceptual coding
algorithms discussed in the remainder of this paper confirm
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this possibility. In fact, several coders approach transparency
in the neighborhood of just 1 bit per sample. Regardless of
design details, all perceptual audio coders seek to achieve
transparent quality at low bit rates with tractable complexity
and manageable delay. The discussion of algorithms given
in Sections IV–VIII brings to light many of the tradeoffs in-
volved with the various coder design philosophies.

B. Paper Organization

This paper is organized as follows. In Section II, psy-
choacoustic principles are described. Johnston’s notion of
perceptual entropy [45] is presented as a measure of the
fundamental limit of transparent compression for audio,
and the ISO/IEC MPEG-1 psychoacoustic analysis model
1 is presented. Section III explores filter bank design issues
and algorithms, with a particular emphasis placed on the
modified discrete cosine transform (MDCT), a perfect
reconstruction (PR) cosine-modulated filter bank that is
widely used in current perceptual audio coding algorithms.
Section III also addresses pre-echo artifacts and control
strategies. Sections IV–VII review established and emerging
techniques for transparent coding of FM- and CD-quality
audio signals, including several algorithms that have become
international standards. Transform coding methodologies
are described in Section IV, subband coding algorithms are
addressed in Section V, sinusoidal algorithms are presented
in Section VI, and LPC-based algorithms appear in Sec-
tion VII. In addition to methods based on uniform bandwidth
filter banks, Section V covers coding methods that utilize
discrete wavelet transforms (DWT’s), discrete wavelet
packet transforms (DWPT’s), and other nonuniform filter
banks. Examples of hybrid algorithms that make use of more
than one signal model appear throughout Sections IV–VII.
Section VIII is concerned with standardization activities in
audio coding. It describes recently adopted standards such
as the ISO/IEC MPEG family (1 “.MP1/2/3,” 2, 4),
the Phillips’ Digital Compact Cassette (DCC), the Sony
Minidisk (ATRAC), the cinematic Sony SDDS, the Lucent
Technologies Perceptual Audio Coder (PAC)/Enhanced Per-
ceptual Audio Coder (EPAC)/Multichannel PAC (MPAC),
and the Dolby AC-2/AC-3. Included in this discussion, Sec-
tion VIII-A gives complete details on the “.MP3” system,
which has been popularized in World Wide Web (WWW)
and handheld media applications (e.g., Diamond RIO).
Note that the “.MP3” label denotes the MPEG-1, Layer
III algorithm. Following the description of the standards,
Section IX provides information on subjective quality
measures for perceptual codecs. The five-point absolute and
differential subjective grading scales are addressed, as well
as the subjective test methodologies specified in the ITU-R
Recommendation BS.1116. A set of subjective benchmarks
is provided for the various standards in both stereophonic
and multichannel modes to facilitate interalgorithm com-
parisons. This paper concludes with a discussion of future
research directions.

As an aside, the reader should be aware that the distinc-
tion drawn between transform and subband coding in this
paper (Sections IV and V) and in the literature is nowadays

largely artificial. Although subband versus transform coding
class distinctions were justified for the early algorithms that
were based on either unitary transforms (e.g., DFT, DCT) or
subband filters [e.g., tree-structured quadrature mirror filter
(QMF)], the same distinction is not valid for modern algo-
rithms that make use of modulated filter banks such as the
MDCT or pseudo-QMF (PQMF). The block transform real-
izations typically used for the MDCT and PQMF filter banks
have been partially responsible for this semantic confusion.
A consistent feature of algorithms erroneously lumped into
the transform class is that they often make use of very high-
resolution filter banks such as a 512-, 1024-, or even 2048-
channel MDCT (e.g., ASPEC or DPAC, Sections IV-E and
IV-F). Algorithms typically lumped into the subband class
tend to make use of lower resolution filter banks, such as
a discrete wavelet packet transform with the decomposition
tree structured to emulate a critical bandwidth analysis with
only 24 subbands (e.g., coders described in Sections V-C and
V-D). These consistent (mis)classifications have inspired the
logical proposal that the subband/transform class labels for
modern coders should be replaced with the classifications of
“low-resolution” and “high-resolution” subband coding [33].
The importance of this discussion will become more apparent
later in this paper.

For additional information on perceptual coding, one
can also refer to informative reviews of recent progress in
wideband and high-fidelity audio coding that have appeared
in the literature. Discussions of audio signal characteristics
and the application of psychoacoustic principles to audio
coding can be found in [26]–[28]. Jayantet al.of Bell Labs
also considered perceptual models and their applications
to speech, video, and audio signal compression [29]. Noll
describes current algorithms in [30] and [31], including
the ISO/MPEG audio compression standards. A recent
treatment of the ISO/MPEG algorithms appeared in [75].
Also recently, excellent tutorial perspectives on audio
coding fundamentals [32], [62], as well as signal-processing
advances [33] central to audio coding, were provided by
Brandenburg and Johnston, respectively. In addition, two
collections of papers on the current audio coding standards,
as well as psychoacoustics, performance measures, and
applications, appeared in [34]–[36].

Throughout the remainder of this paper, bit rates will
correspond to single-channel or monaural coding, unless
otherwise specified. In addition, subjective quality measure-
ments are specified in terms of either the five-point mean
opinion score (MOS) or the 41-point subjective difference
grade (SDG). These measures are defined in Section IX-A.

II. PSYCHOACOUSTICPRINCIPLES

High-precision engineering models for high-fidelity audio
currently do not exist. Therefore, audio coding algorithms
must rely upon generalized receiver models to optimize
coding efficiency. In the case of audio, the receiver is ulti-
mately the human ear and sound perception is affected by its
masking properties. The field of psychoacoustics [37]–[43]
has made significant progress toward characterizing human
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Fig. 2. The absolute threshold of hearing in quiet. Across the audio spectrum, it quantifies the SPL
required at each frequency such that an average listener will detect a pure tone stimulus in a noiseless
environment.

auditory perception and particularly the time-frequency
analysis capabilities of the inner ear. Although applying
perceptual rules to signal coding is not a new idea [44], most
current audio coders achieve compression by exploiting the
fact that “irrelevant” signal information is not detectable
by even a well trained or sensitive listener. Irrelevant infor-
mation is identified during signal analysis by incorporating
into the coder several psychoacoustic principles, including
absolute hearing thresholds, critical band frequency anal-
ysis, simultaneous masking, the spread of masking along
the basilar membrane, and temporal masking. Combining
these psychoacoustic notions with basic properties of signal
quantization has also led to the theory of perceptual entropy
[45], a quantitative estimate of the fundamental limit of
transparent audio signal compression. This section reviews
psychoacoustic fundamentals and perceptual entropy, and
then gives as an application example some details of the
ISO/MPEG psychoacoustic model one.

Before proceeding, however, it is necessary to define the
sound pressure level(SPL), a standard metric that quan-
tifies the intensity of an acoustical stimulus [42]. Nearly
all of the auditory psychophysical phenomena addressed
in this paper are treated in terms of SPL. The SPL gives
the level (intensity) of sound pressure in decibels (dB)
relative to an internationally defined reference level, i.e.,

dB, where is the SPL of a
stimulus, is the sound pressure of the stimulus in Pascals
[Pa—equivalent to Newtons per square meter (N/m)], and

is the standard reference level of Pa, or 2 10
N/m [309]. About 150-dB SPL spans the dynamic range of
intensity for the human auditory system, from the limits of
detection for low-intensity (quiet) stimuli up to the threshold

of pain for high-intensity (loud) stimuli. The SPL reference
level is calibrated such that the frequency-dependent abso-
lute threshold of hearing in quiet (Section II-A) tends to
measure in the vicinity of 0-dB SPL. On the other hand, a
stimulus level of 140-dB SPL is typically at or above the
threshold of pain. Each of the phenomena addressed in the
remainder of this section is characterized in terms of SPL.

A. Absolute Threshold of Hearing

The absolute threshold of hearing characterizes the
amount of energy needed in a pure tone such that it can
be detected by a listener in a noiseless environment. The
absolute threshold is typically expressed in terms of dB SPL.
The frequency dependence of this threshold was quantified
as early as 1940, when Fletcher [37] reported test results
for a range of listeners that were generated in a National
Institutes of Health study of typical American hearing
acuity. The quiet (absolute) threshold is well approximated
[46] by the nonlinear function

(dB SPL) (1)

which is representative of a young listener with acute
hearing. When applied to signal compression, could
be interpreted naively as a maximum allowable energy level
for coding distortions introduced in the frequency domain
(Fig. 2). At least two caveats must govern this practice,
however. First, whereas the thresholds captured in Fig. 2
are associated with pure tone stimuli, the quantization noise
in perceptual coders tends to be spectrally complex rather
than tonal. Second, it is important to realize that algorithm
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Fig. 3. The frequency-to-place transformation along the basilar membrane. The picture gives a
schematic representation of the traveling wave envelopes (measured in terms of vertical membrane
displacement) that occur in response to an acoustic tone complex containing sinusoids of 400, 1600,
and 6400 Hz. Peak responses for each sinusoid are localized along the membrane surface, with
each peak occurring at a particular distance from the oval window (cochlear “input”). Thus, each
component of the complex stimulus evokes strong responses only from the neural receptors associated
with frequency-specific loci (after [42]).

designers have no a priori knowledge regarding actual play-
back levels (SPL), and therefore the curve is often referenced
to the coding system by equating the lowest point (i.e., near
4 kHz) to the energy in 1 bit of signal amplitude. In other
words, it is assumed that the playback level (volume control)
on a typical decoder will be set such that the smallest pos-
sible output signal will be presented close to 0-dB SPL. This
assumption is conservative for quiet to moderate listening
levels in uncontrolled open-air listening environments, and
therefore this referencing practice is commonly found in
algorithms that utilize the absolute threshold of hearing.
We note that the absolute hearing threshold is related to
a commonly encountered acoustical metric other than
SPL, namely, dB sensation level (dB SL).Sensation Level
denotes the intensity level difference for a stimulus relative
to a listener’s individual unmasked detection threshold for
the stimulus [309]. Hence, “equal SL” signal components
may have markedly different absolute SPL’s, but all equal
SL components will have equal suprathreshold margins.
The motivation for the use of SL measurements is that SL
quantifies listener-specific audibility rather than an absolute
level. Whether the target metric is SPL or SL, perceptual
coders must eventually reference the internal PCM data to
a physical scale. A detailed example of this referencing for
SPL is given in Section II-F.

B. Critical Bands

Using the absolute threshold of hearing to shape the
coding distortion spectrum represents the first step toward
perceptual coding. Considered on its own, however, the
absolute threshold is of limited value in the coding context.
The detection threshold for spectrally complex quantization
noise is a modified version of the absolute threshold, with
its shape determined by the stimuli present at any given
time. Since stimuli are in general time-varying, the detection
threshold is also a time-varying function of the input signal.
In order to estimate this threshold, we must first understand
how the ear performs spectral analysis. A frequency-to-place
transformation takes place in the cochlea (inner ear), along
the basilar membrane [42]. The transformation works as
follows. A sound wave generated by an acoustic stimulus

moves the eardrum and the attached ossicular bones, which
in turn transfer the mechanical vibrations to the cochlea, a
spiral-shaped, fluid-filled structure that contains the coiled
basilar membrane. Once excited by mechanical vibrations
at its oval window (the input), the cochlear structure induces
traveling waves along the length of the basilar membrane.
Neural receptors are connected along the length of the basilar
membrane. The traveling waves generate peak responses
at frequency-specific membrane positions, and therefore
different neural receptors are effectively “tuned” to different
frequency bands according to their locations. For sinusoidal
stimuli, the traveling wave on the basilar membrane propa-
gates from the oval window until it nears the region with a
resonant frequency near that of the stimulus frequency. The
wave then slows, and the magnitude increases to a peak.
The wave decays rapidly beyond the peak. The location of
the peak is referred to as the “best place” or “character-
istic place” for the stimulus frequency, and the frequency
that best excites a particular place [47], [48] is called the
“best frequency” or “characteristic frequency.” Thus, a fre-
quency-to-place transformation occurs. An example is given
in Fig. 3 for a three-tone stimulus. The interested reader
can also find on-line a number of high-quality animations
demonstrating this aspect of cochlear mechanics [49]. As a
result of the frequency-to-place transformation, the cochlea
can be viewed from a signal-processing perspective as a
bank of highly overlapping bandpass filters. The magnitude
responses are asymmetric and nonlinear (level dependent).
Moreover, the cochlear filter passbands are of nonuniform
bandwidth, and the bandwidths increase with increasing fre-
quency. The “critical bandwidth” is a function of frequency
that quantifies the cochlear filter passbands. Empirical work
by several observers led to the modern notion of critical
bands [37]–[40]. We will consider two typical examples.
In one scenario, the loudness (perceived intensity) remains
constant for a narrow-band noise source presented at a
constant SPL even as the noise bandwidth is increased up to
the critical bandwidth. For any increase beyond the critical
bandwidth, the loudness then begins to increase. In this
case, one can imagine that loudness remains constant as
long as the noise energy is present within only one cochlear
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“channel” (critical bandwidth), and then that the loudness
increases as soon as the noise energy is forced into adjacent
cochlear “channels.” Critical bandwidth can also be viewed
as the result of auditory detection efficacy in terms of a
signal-to-noise ratio (SNR) criterion. The power spectrum
model of hearing assumes that masked threshold for a given
listener will occur at a constant, listener-specific SNR [50].
In the critical bandwidth measurement experiments, the de-
tection threshold for a narrow-band noise source presented
between two masking tones remains constant as long as
the frequency separation between the tones remains within
a critical bandwidth [Fig. 4(a)]. Beyond this bandwidth,
the threshold rapidly decreases [Fig. 4(c)]. From the SNR
viewpoint, one can imagine that as long as the masking
tones are presented within the passband of the auditory filter
(critical bandwidth) that is tuned to the probe noise, the SNR
presented to the auditory system remains constant, and hence
the detection threshold does not change. As the tones spread
further apart and transition into the filter stopband, however,
the SNR presented to the auditory system improves, and
hence the detection task becomes easier. In order to maintain
a constant SNR at threshold for a particular listener, the
power spectrum model calls for a reduction in the probe
noise commensurate with the reduction in the energy of the
masking tones as they transition out of the auditory filter
passband. Thus, beyond critical bandwidth, the detection
threshold for the probe tones decreases, and the threshold
SNR remains constant.

A notched-noise experiment with a similar interpretation
can be constructed with masker and maskee roles reversed
[Fig. 4(b) and (d)]. Critical bandwidth tends to remain con-
stant (about 100 Hz) up to 500 Hz, and increases to approxi-
mately 20% of the center frequency above 500 Hz. For an av-
erage listener, critical bandwidth [Fig. 5(b)] is conveniently
approximated [42] by

(Hz) (2)

Although the function is continuous, it is useful when
building practical systems to treat the ear as a discrete set of
bandpass filters that conforms to (2). Table 1 gives an ideal-
ized filter bank that corresponds to the discrete points labeled
on the curve in Fig. 5(a) and (b). A distance of one critical
band is commonly referred to as “one Bark” in the literature.
The function [42]

(Bark) (3)

is often used to convert from frequency in hertz to the Bark
scale [Fig. 5(a)]. Corresponding to the center frequencies of
the Table 1 filter bank, the numbered points in Fig. 5(a) il-
lustrate that the nonuniform Hertz spacing of the filter bank
(Fig. 6) is actually uniform on a Bark scale. Thus, one critical
bandwidth (CB) comprises one Bark.

Although the critical bandwidth captured in (2) is widely
used in perceptual models for audio coding, we note that

(a) (b)

(c) (d)

Fig. 4. Critical band measurement methods: (a) and (c) detection
threshold decreases as masking tones transition from auditory filter
passband into stopband, thus improving detection SNR, and (b) and
(d) same interpretation with roles reversed (after [42]).

there are alternative expressions. In particular, the equivalent
rectangular bandwidth (ERB) scale emerged from research
directed toward measurement of auditory filter shapes. In
this work, experimental data are obtained typically from
notched noise masking procedures. Then, investigators fit
the masking data with parametric weighting functions that
represent the spectral shaping properties of the auditory fil-
ters [50]. Rounded exponential models with one or two free
parameters are popular. For example, the single-parameter
“roex(p)” model is given by

(4)

where
normalized frequency;

center frequency of the filter;
frequency in hertz.

Although the roex(p) model does not capture filter asym-
metry, asymmetric filter shapes are possible if two roex(p)
models are used independently for the high and low fre-
quency filter skirts. Two parameter models such as the
roex(p, r) are also used to gain additional degrees of freedom
[50] in order to improve the accuracy of the filter shape
estimates. After curve fitting, an ERB estimate is obtained
directly from the parametric filter shape. For the roex(p)
model, it can be shown easily that the equivalent rectangular
bandwidth is given by

ERB (5)

We note that some texts denote ERB by “equivalent noise
bandwidth.” An example is given in Fig. 7. The solid line
in Fig. 7(a) shows an example roex(p) filter estimated for
a center frequency of 1 kHz, while the dashed line shows
the ERB associated with the given roex(p) filter shape. In
[51] and [52], Moore and Glasberg summarized experimental
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Table 1
Idealized Critical Band Filter Bank (After [40]). Band Edges and Center Frequencies for a Collection
of 25 Critical Bandwidth Auditory Filters That Span the Audio Spectrum. Note That This Idealized
Filter Bank Reflects Critical Bandwidth of (2), Not the ERB of (6)

(a)

(b)

Fig. 5. Two views of critical bandwidth: (a) critical band rate
z(f) maps from Hertz to Barks and (b) critical bandwidthBW (f)
expresses critical bandwidth as a function of center frequency, in
Hertz. The X’s denote the center frequencies of the idealized critical
band filter bank given in Table 1.

ERB measurements for roex(p,r) models obtained over a pe-
riod of several years by a number of different investigators.

Given a collection of ERB measurements on center frequen-
cies across the audio spectrum, a curve fitting on the data set
yielded the following expression for ERB as a function of
center frequency:

ERB (6)

As shown in Fig. 7(b), the function specified by (6) differs
from the critical bandwidth of (2). Of particular interest for
perceptual codec designers, the ERB scale implies that audi-
tory filter bandwidths decrease below 500 Hz, whereas the
critical bandwidth remains essentially flat. The apparent in-
creased frequency selectivity of the auditory system below
500 Hz has implications for optimal filter bank design, as
well as for perceptual bit allocation strategies. These impli-
cations are addressed later in this paper.

Regardless or whether it is best characterized in terms
of critical bandwidth or ERB, the frequency resolution
of the auditory filter bank largely determines which por-
tions of a signal are perceptually irrelevant. The auditory
time-frequency analysis that occurs in the critical band filter
bank induces simultaneous and nonsimultaneous masking
phenomena that are routinely used by modern audio coders
to shape the coding distortion spectrum. In particular, the
perceptual models allocate bits for signal components such
that the quantization noise is shaped to exploit the detection
thresholds for a complex sound (e.g., quantization noise).
These thresholds are determined by the energy within a crit-
ical band [53]. Masking properties and masking thresholds
are described next.

C. Simultaneous Masking, Masking Asymmetry, and the
Spread of Masking

Masking refers to a process where one sound is rendered
inaudible because of the presence of another sound. Simul-
taneous masking may occur whenever two or more stimuli
are simultaneously presented to the auditory system. From
a frequency-domain point of view, the relative shapes of the
masker and maskee magnitude spectra determine to what
extent the presence of certain spectral energy will mask
the presence of other spectral energy. From a time-domain
perspective, phase relationships between stimuli can also
affect masking outcomes. A simplified explanation of the
mechanism underlying simultaneous masking phenomena is
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Fig. 6. Idealized critical band filter bank. Illustrates magnitude
responses from Table 1. Note that this idealized filter bank reflects
critical bandwidth of (2), not the ERB of (6).

that the presence of a strong noise or tone masker creates an
excitation of sufficient strength on the basilar membrane at
the critical band location to block effectively detection of a
weaker signal. Although arbitrary audio spectra may contain
complex simultaneous masking scenarios, for the purposes
of shaping coding distortions it is convenient to distinguish
between only three types of simultaneous masking, namely,
noise-masking-tone (NMT) [40], tone-masking-noise
(TMN) [41], and noise-masking-noise(NMN) [54]. A
tutorial treatment of these phenomena and their particular
relevance to perceptual coding appeared recently in [54].
Some essential characteristics are described next.

1) Noise-Masking-Tone:In the NMT scenario
[Fig. 8(a)], a narrow-band noise (e.g., having 1 Bark
bandwidth) masks a tone within the same critical band,
provided that the intensity of the masked tone is below a
predictable threshold directly related to the intensity—and,
to a lesser extent, the center frequency—of the masking
noise. Numerous studies characterizing NMT for random
noise and pure tone stimuli have appeared since the 1930’s
(e.g., [55] and [56]). At the threshold of detection for the
masked tone, the minimum signal-to-mask ratio (SMR), i.e.,
the smallest difference between the intensity (SPL) of the
masking noise (“signal”) and the intensity of the masked
tone (“mask”) occurs when the frequency of the masked tone
is close to the masker’s center frequency. In most studies,
the minimum SMR tends to lie between5 and 5 dB.
For example, a sample threshold SMR result from the NMT
investigation [56] is schematically represented in Fig. 8(a).
In the figure, a critical band noise masker centered at 410 Hz
with an intensity of 80-dB SPL masks a 410-Hz tone, and the
resulting SMR at the threshold of detection is 4 dB. Masking
power decreases (i.e., SMR increases) for probe tones above
and below the frequency of the minimum SMR tone, in
accordance with a level- and frequency-dependent spreading
function that is described later. We note that temporal factors

(a)

(b)

Fig. 7. (a) Example ERB for a roex(p) single-parameter estimate
of the shape of the auditory filter centered at 1 kHz. The solid
line represents an estimated spectral weighting function for
a single-parameter fit to data from a notched noise masking
experiment; the dashed line represents the equivalent rectangular
bandwidth. (b) ERB versus critical bandwidth—the ERB of (6)
(solid) versus critical bandwidth of (2) (dashed) as a function of
center frequency.

also affect simultaneous masking. For example, in the NMT
scenario, an overshoot effect is possible when the probe tone
onset occurs within a short interval immediately following
masker onset. Overshoot can boost simultaneous masking
(i.e., decrease the threshold minimum SMR) by as much as
10 dB over a brief time span [42]. Section II-D addresses
other temporal masking factors.

2) Tone-Masking-Noise:In the case of TMN [Fig. 8(b)],
a pure tone occurring at the center of a critical band masks
noise of any subcritical bandwidth or shape, provided the
noise spectrum is below a predictable threshold directly
related to the strength—and, to a lesser extent, the center
frequency—of the masking tone. In contrast to NMT,
relatively few studies have attempted to characterize TMN.
At the threshold of detection for a noise band masked by a
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(a)

(b)

Fig. 8. Example to illustrate the asymmetry of simultaneous
masking. (a) Noise-masking-tone—at the threshold of detection,
a 410-Hz pure tone presented at 76-dB SPL is just masked by a
critical bandwidth narrow-band noise centered at 410 Hz (90-Hz
BW) of overall intensity 80-dB SPL. This corresponds to a
threshold minimum SMR of 4 dB. The threshold SMR increases
as the probe tone is shifted either above or below 410 Hz. (b)
Tone-masking-noise—at the threshold of detection, a 1-kHz pure
tone presented at 80-dB SPL just masks a critical-band narrow-band
noise centered at 1 kHz of overall intensity 56-dB SPL. This
corresponds to a threshold minimum SMR of 24 dB. As for the
NMT experiment, threshold SMR for the TMN increases as the
masking tone is shifted either above or below the noise center
frequency 1 kHz. When comparing (a) to (b), it is important to
notice the apparent “masking asymmetry,” namely, that NMT
produces a significantly smaller threshold minimum SMR (4 dB)
than does TMN (24 dB). In other words, significantly greater
masking power is associated with noise maskers than with tonal
maskers. Masking asymmetry is treated in greater depth in [54] and
[58].

pure tone, however, it was found in both [41] and [44] that
the minimum SMR, i.e., the smallest difference between the
intensity of the masking tone (“signal”) and the intensity
of the masked noise (“mask”), occurs when the masker
frequency is close to the center frequency of the probe noise,
and that the minimum SMR for TMN tends lie between

21–28 dB. A sample result from the TMN study [44] is given
in Fig. 8(b). In the figure, a narrow-band noise of one Bark
bandwidth centered at 1 kHz is masked by a 1-kHz tone of
intensity 80-dB SPL. The resulting SMR at the threshold of
detection is 24 dB. As with NMT, the TMN masking power
decreases for critical bandwidth probe noises centered above
and below the minimum SMR probe noise.

3) Noise-Masking-Noise:The NMN scenario, in which
a narrow-band noise masks another narrow-band noise, is
more difficult to characterize than either NMT or TMN be-
cause of the confounding influence of phase relationships
between the masker and maskee [54]. Essentially, different
relative phases between the components of each can lead to
different threshold SMR’s. The results from one study of in-
tensity difference detection thresholds for wide-band noises
[57] produced threshold SMR’s of nearly 26 dB for NMN
[54].

4) Asymmetry of Masking:The NMT and TMN exam-
ples in Fig. 8 clearly show an asymmetry in masking
power between the noise masker and the tone masker.
In spite of the fact that both maskers are presented at
a level of 80-dB SPL, the associated threshold SMR’s
differ by 20 dB. This asymmetry motivates our interest
in both the TMN and NMT masking paradigms, as well
as NMN. In fact, knowledge of all three is critical to suc-
cess in the task of shaping coding distortion such that it
is undetectable by the human auditory system. For each
temporal analysis interval, a codec’s perceptual model
should identify across the frequency spectrum noise-like
and tone-like components within both the audio signal
and the coding distortion. Next, the model should apply
the appropriate masking relationships in a frequency-spe-
cific manner. In conjunction with the spread of masking
(below), NMT, NMN, and TMN properties can then be
used to construct a global masking threshold. Although
current methods for masking threshold estimation have
proven effective, we note that a deeper understanding of
masking asymmetry may provide opportunities for im-
proved perceptual models. In particular, Hall [58] has re-
cently shown that masking asymmetry can be explained
in terms of relative masker/maskee bandwidths, and not
necessarily exclusively in terms of absolute masker prop-
erties. Ultimately, this implies that thede facto stan-
dard energy-based schemes for masking power estimation
among perceptual codecs may be valid only so long as
the masker bandwidth equals or exceeds maskee (probe)
bandwidth. In cases where the probe bandwidth exceeds
the masker bandwidth, an envelope-based measure should
be embedded in the masking calculation [54], [58].

5) The Spread of Masking:As alluded to earlier, the si-
multaneous masking effects characterized above by the sim-
plified paradigms of NMT, TMN, and NMN are not band-
limited to within the boundaries of a single critical band. In-
terband masking also occurs, i.e., a masker centered within
one critical band has some predictable effect on detection
thresholds in other critical bands. This effect, also known as
the spread of masking, is often modeled in coding applica-
tions by an approximately triangular spreading function that
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Fig. 9. Schematic representation of simultaneous masking (after
[30]).

has slopes of 25 and 10 dB per Bark. A convenient ana-
lytical expression [44] is given by

dB (7)

where has units of Barks and is expressed in dB.
After critical band analysis is done and the spread of masking
has been accounted for, masking thresholds in perceptual
coders are often established by the [59] decibel relations

(8)

and

(9)

where
and noise and tone masking thresholds, respec-

tively, due to TMN and NMT;
and critical band noise and tone masker energy

levels, respectively;
critical band number.

Depending upon the algorithm, the parameterhas typi-
cally been set between 3 and 5 dB. Of course, the thresholds
of (8) and (9) capture only the contributions of individual
tone-like or noise-like maskers. In the actual coding sce-
nario, each frame typically contains a collection of both
masker types. One can see easily that (8) and (9) capture the
masking asymmetry described previously. After they have
been identified, these individual masking thresholds are
combined to form a global masking threshold. The global
masking threshold comprises an estimate of the level at
which quantization noise becomes just noticeable. Conse-
quently, the global masking threshold is sometimes referred
to as the level of “just noticeable distortion,” or “JND.” The
standard practice in perceptual coding involves first classi-
fying masking signals as either noise or tone, next computing
appropriate thresholds, then using this information to shape
the noise spectrum beneath JND. Two illustrated examples
are given in Sections II-E and II-F, which are on perceptual
entropy, and ISO/IEC MPEG Model 1, respectively. Note
that the absolute threshold () of hearing is also considered
when shaping the noise spectra, and that MAX(JND,)
is most often used as the permissible distortion threshold.

Notions of critical bandwidth and simultaneous masking
in the audio coding context give rise to some convenient
terminology illustrated in Fig. 9, where we consider the case
of a single masking tone occurring at the center of a critical
band. All levels in the figure are given in terms of dB SPL.
A hypothetical masking tone occurs at some masking level.
This generates an excitation along the basilar membrane
that is modeled by a spreading function and a corresponding
masking threshold. For the band under consideration, the
minimum masking thresholddenotes the spreading function
in-band minimum. Assuming the masker is quantized using
an -bit uniform scalar quantizer, noise might be introduced
at the level m. SMR and noise-to-mask ratio (NMR) denote
the log distances from the minimum masking threshold to
the masker and noise levels, respectively.

D. Nonsimultaneous Masking

As shown in Fig. 10, masking phenomena extend in time
beyond the window of simultaneous stimulus presentation.
In other words, for a masker of finite duration, nonsimulta-
neous (also sometimes denoted “temporal”) masking occurs
both prior to masker onset as well as after masker removal.
The skirts on both regions are schematically represented
in Fig. 10. Essentially, absolute audibility thresholds for
masked sounds are artificially increased prior to, during,
and following the occurrence of a masking signal. Whereas
significant premasking tends to last only about 1–2 ms,
postmasking will extend anywhere from 50 to 300 ms,
depending upon the strength and duration of the masker
[42]. Tutorial treatments of nonsimultaneous masking
have appeared in recent papers on psychoacoustics for
audio coding applications [50], [54]. Here we consider
key nonsimultaneous masking properties that should be
embedded in audio codec perceptual models. Of the two
nonsimultaneous masking modes, forward masking is better
understood. For masker and probe of the same frequency,
experimental studies have shown that the amount of forward
(post) masking depends in a predictable way on stimulus
frequency [60], masker intensity [60], probe delay after
masker cessation [60], and masker duration [50]. Forward
masking also exhibits frequency-dependent behavior similar
to simultaneous masking that can be observed when the
masker and probe frequency relationship is varied [61].
Although backward (pre) masking has also been the subject
of many studies, it is less well understood [50]. As shown
in Fig. 10, backward masking decays much more rapidly
than forward masking. For example, one study at Thomson
Consumer Electronics showed that only 2 ms prior to masker
onset, the masked threshold was already 25 dB below the
threshold of simultaneous masking [62]. We note, however,
that the literature lacks consensus over the maximum time
persistence of significant backward masking. Despite the in-
consistent results across studies, it is nevertheless generally
accepted that the amount of measured backward masking
depends significantly on the training of the experimental
subjects. For the purposes of perceptual coding, abrupt audio
signal transients (e.g., the onset of a percussive musical
instrument) create pre- and postmasking regions in time
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Fig. 10. Nonsimultaneous masking properties of the human ear. Backward (pre) masking occurs prior
to masker onset and lasts only a few milliseconds; forward (post) masking may persist for more than
100 ms after masker removal (after [42]).

during which a listener will not perceive signals beneath
the elevated audibility thresholds produced by a masker.
In fact, temporal masking has been used in several audio
coding algorithms (e.g., [12], [63], [112], [268], and [306]).
Premasking in particular has been exploited in conjunction
with adaptive block size transform coding to compensate for
pre-echo distortions (Sections III-D, IV, and VIII).

E. Perceptual Entropy

Johnston, while at Bell Labs, combined notions of psy-
choacoustic masking with signal quantization principles to
define perceptual entropy, a measure of perceptually relevant
information contained in any audio record. Expressed in bits
per sample, PE represents a theoretical limit on the compress-
ibility of a particular signal. PE measurements reported in
[45] and [6] suggest that a wide variety of CD-quality audio
source material can be transparently compressed at approx-
imately 2.1 bits per sample. The PE estimation process is
accomplished as follows. The signal is first windowed and
transformed to the frequency domain. A masking threshold
is then obtained using perceptual rules. Finally, a determina-
tion is made of the number of bits required to quantize the
spectrum without injecting perceptible noise. The PE mea-
surement is obtained by constructing a PE histogram over
many frames and then choosing a worst case value as the ac-
tual measurement.

The frequency-domain transformation is done with
a Hann window followed by a 2048-point fast Fourier
transform (FFT). Masking thresholds are obtained by
performing critical band analysis (with spreading), making
a determination of the noise-like or tone-like nature of the
signal, applying thresholding rules for the signal quality,
then accounting for the absolute hearing threshold. First,
real and imaginary transform components are converted to
power spectral components

Re Im (10)

then a discrete Bark spectrum is formed by summing the en-
ergy in each critical band (Table 1)

(11)

where the summation limits are the critical band boundaries.
The range of the index is sample-rate dependent, and in
particular for CD-quality signals. A spreading
function (7) is then convolved with the discrete Bark spec-
trum

(12)

to account for the spread of masking. An estimation of the
tone-like or noise-like quality for is then obtained using
the spectral flatness measure (SFM) [64]

SFM (13)

where and , respectively, correspond to the geometric
and arithmetic means of the power spectral density (PSD)
components for each band. The SFM has the property that it
is bounded by zero and one. Values close to one will occur if
the spectrum is flat in a particular band, indicating a decor-
related (noisy) band. Values close to zero will occur if the
spectrum in a particular band is narrowband. A “coefficient
of tonality” is next derived from the SFM on a dB scale

(14)

and this is used to weight the thresholding rules given by (8)
and (9) (with ) as follows for each band to form an
offset

(in dB) (15)

A set of JND estimates in the frequency power domain are
then formed by subtracting the offsets from the Bark spectral
components

(16)

These estimates are scaled by a correction factor to simu-
late deconvolution of the spreading function, and eachis
then checked against the absolute threshold of hearing and re-
placed by . In a manner essentially identical
to the SPL calibration procedure that was described in Sec-
tion II-A, the PE estimation is calibrated by equating the min-
imum absolute threshold to the energy in a 4-kHz signal of

1 bit amplitude. In other words, the system assumes that the
playback level (volume control) is configured such that the
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smallest possible signal amplitude will be associated with an
SPL equal to the minimum absolute threshold. By applying
uniform quantization principles to the signal and associated
set of JND estimates, it is possible to estimate a lower bound
on the number of bits required to achieve transparent coding.
In fact, it can be shown that the perceptual entropy in bits per
sample is given by

int
Re

int
Im

(bits/sample)

(17)

where
index of critical band;

and upper and lower bounds of band;
number of transform components in
band ;
masking threshold in band[(16)];
rounding to the nearest integer.

Note that if zero occurs in the log argument, we assign zero
for the result. The masking thresholds used in the above PE
computation also form the basis for a transform coding al-
gorithm described in Section III. In addition, the ISO/IEC
MPEG-1 psychoacoustic model 2, which is often used in
“.MP3” encoders, is closely related to the PE procedure. We
note, however, that there have been evolutionary improve-
ments since the PE estimation scheme first appeared in 1988.
For example, the PE calculation in many systems nowadays
(e.g., [17]) relies on improved tonality estimates relative to
the SFM-based measure of (14). The SFM-based measure is
both time and frequency constrained. Only one spectral esti-
mate (analysis frame) is examined in time, and in frequency,
the measure by definition lumps together multiple spectral
lines. In contrast, the more recently proposed tonality estima-
tion schemes (e.g., the “chaos measure” [17], [62]) consider
the predictability of individual frequency components across
time, in terms of magnitude and phase tracking properties.
A predicted value for each component is compared against
its actual value, and the Euclidean distance is mapped to a
measure of predictability. Highly predictable spectral com-
ponents are considered to be tonal, while unpredictable com-
ponents are treated as noise-like. A tonality coefficient that
allows weighting toward one extreme or the other is com-
puted from the chaos measure, just as in (14). Improved per-
formance has been demonstrated in several instances (e.g.,
[8], [17], [62]). Nevertheless, the PE measurement as pro-
posed in its original form conveys valuable insight on the ap-
plication of simultaneous masking asymmetry to a perceptual
model in a practical system.

F. Example Codec Perceptual Model: ISO 11172-3
(MPEG-1) Psychoacoustic Model 1

It is useful to consider an example of how the psychoa-
coustic principles described thus far are applied in actual
coding algorithms. The ISO/IEC 11172-3 (MPEG-1, layer

I) psychoacoustic model 1 [17] determines the maximum
allowable quantization noise energy in each critical band
such that quantization noise remains inaudible. In one of its
modes, the model uses a 512-point FFT for high-resolution
spectral analysis (86.13 Hz), then estimates for each input
frame individual simultaneous masking thresholds due to
the presence of tone-like and noise-like maskers in the signal
spectrum. A global masking threshold is then estimated
for a subset of the original 256 frequency bins by (power)
additive combination of the tonal and nontonal individual
masking thresholds. The remainder of this section describes
the step-by-step model operations. Sample results are given
for one frame of CD-quality pop music sampled at 44.1
kHz/16 bits per sample. We note that although this model
is suitable for any of the MPEG-1 coding layers, I-III, the
standard [17] recommends that model 1 be used with layers
I and II, while model 2 is recommended for layer III (MP3).
The five steps leading to computation of global masking
thresholds are as follows.

Step 1—Spectral Analysis and SPL Normaliza-
tion: Spectral analysis and normalization are performed
first. The goal of this step is to obtain a high-resolution
spectral estimate of the input, with spectral components
expressed in terms of sound pressure level. Much like the
PE calculation described previously, this SPL normalization
guarantees that a 4-kHz signal of1-bit amplitude will
be associated with an SPL near 0 dB (close to an accept-
able value for normal listeners at 4 kHz), whereas a
full-scale sinusoid will be associated with an SPL near 90
dB. The spectral analysis procedure works as follows. First,
incoming audio samples are normalized according to
the FFT length and the number of bits per sampleusing
the relation

(18)

Normalization references the power spectrum to a 0-dB max-
imum. The normalized input is then segmented into
12-ms frames (512 samples) using a 1/16th-overlapped Hann
window such that each frame contains 10.9 ms of new data. A
PSD estimate is then obtained using a 512-point FFT,
i.e.,

(19)

where the power normalization term is fixed at 90.302
dB and the Hann window is defined as

(20)

Because playback levels are unknown during psychoa-
coustic signal analysis, the normalization procedure [(18)]
and the parameter in (19) are used to estimate SPL con-
servatively from the input signal. For example, a full-scale
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(a)

(b)

Fig. 11. ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music selection,
steps 1–5 as described in the text. (a) Step 1: Obtain PSD, express in dB SPL. Top panel gives linear
frequency scale, bottom panel gives Bark frequency scale. Absolute threshold superimposed. Step 2:
Tonal maskers identified and denoted by “X” symbol; Noise maskers identified and denoted by “O”
symbol. (b) Collection of prototype spreading functions [(31)] shown with level as the parameter.
These illustrate the incorporation of excitation pattern level-dependence into the model. Note that the
prototype functions are defined to be piecewise linear on the Bark scale. These will be associated with
maskers in steps 3 and 4.

sinusoid that is precisely resolved by the 512-point FFT in
bin will yield a spectral line having 84-dB SPL.
With 16-bit sample resolution, SPL estimates for very low
amplitude input signals will be at or below the absolute
threshold. An example PSD estimate obtained in this manner
for a CD-quality pop music selection is given in Fig. 11(a).
The spectrum is shown both on a linear frequency scale

(upper plot) and on the Bark scale (lower plot). The dashed
line in both plots corresponds to the absolute threshold of
hearing approximation used by the model.

Step 2—Identification of Tonal and Noise Maskers:After
PSD estimation and SPL normalization, tonal and nontonal
masking components are identified. Local maxima in the
sample PSD that exceed neighboring components within a
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(c)

(d)

Fig. 11. (Continued.)ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music
selection, steps 1–5 as described in the text. (c) Steps 3 and 4: Spreading functions are associated with
each of the individual tonal maskers satisfying the rules outlined in the text. Note that the SMR at the
peak is close to the widely accepted tonal value of 14.5 dB. (d) Spreading functions are associated with
each of the individual noise maskers that were extracted after the tonal maskers had been eliminated
from consideration, as described in the text. Note that the peak SMR is close to the widely accepted
noise-masker value of 5 dB.

certain Bark distance by at least 7 dB are classified as tonal.
Specifically, the “tonal” set is defined as

dB
(21)

where

– kHz)
– kHz)
– kHz)

(22)
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(e)

Fig. 11. (Continued.)ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music
selection, steps 1–5 as described in the text. (e) Step 5: A global masking threshold is obtained by
combining the individual thresholds as described in the text. The maximum of the global threshold
and the absolute threshold is taken at each point in frequency to be the final global threshold. The
figure clearly shows that some portions of the input spectrum require SNR’s of better than 20 dB to
prevent audible distortion, while other spectral regions require less than 3-dB SNR. In fact, some
high-frequency portions of the signal spectrum are masked and therefore perceptually irrelevant,
ultimately requiring no bits for quantization without the introduction of artifacts.

Tonal maskers are computed from the spectral peaks
listed in as follows:

(dB) (23)

In other words, for each neighborhood maximum, energy
from three adjacent spectral components centered at the peak
are combined to form a single tonal masker. Tonal maskers
extracted from the example pop music selection are identi-
fied using “x” symbols in Fig. 11(a). A single noise masker
for each critical band, , is then computed from (re-
maining) spectral lines not within the neighborhood of
a tonal masker using the sum

(dB)

(24)

where is defined to be the geometric mean spectral line of
the critical band, i.e.,

(25)

where and are the lower and upper spectral line bound-
aries of the critical band, respectively. The idea behind (24)
is that residual spectral energy within a critical bandwidth

not associated with a tonal masker must, by default, be asso-
ciated with a noise masker. Therefore, in each critical band,
(24) combines into a single noise masker all of the energy
from spectral components that have not contributed to a tonal
masker within the same band. Noise maskers are denoted in
Fig. 11 by “o” symbols. Dashed vertical lines are included in
the Bark scale plot to show the associated critical band for
each masker.

Step 3—Decimation and Reorganization of Maskers:In
this step, the number of maskers is reduced using two criteria.
First, any tonal or noise maskers below the absolute threshold
are discarded, i.e., only maskers that satisfy

(26)

are retained, where is the SPL of the threshold in quiet
at spectral line . In the pop music example, two high-fre-
quency noise maskers identified during step 2 [Fig. 11(a)]
are dropped after application of (26) [Fig. 11(c)–(e)]. Next,
a sliding 0.5-Bark-wide window is used to replace any pair
of maskers occurring within a distance of 0.5 Bark by the
stronger of the two. In the pop music example, two tonal
maskers appear between 19.5–20.5 Barks [Fig. 11(a)]. It
can be seen that the pair is replaced by the stronger of the
two during threshold calculations [Fig. 11(c)–(e)]. After
the sliding window procedure, masker frequency bins are
reorganized according to the subsampling scheme

(27)
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(28)

where

mod
mod .

(29)

The net effect of (29) is 2 : 1 decimation of masker bins in
critical bands 18–22 and 4 : 1 decimation of masker bins in
critical bands 22–25, with no loss of masking components.
This procedure reduces the total number of tone and noise
masker frequency bins under consideration from 256 to 106.
Tonal and noise maskers shown in Fig. 11(c)–(e) have been
relocated according to this decimation scheme.

Step 4—Calculation of Individual Masking Thresh-
olds: Using the decimated set of tonal and noise maskers,
individual tone and noise masking thresholds are computed
next. Each individual threshold represents a masking con-
tribution at frequency bin due to the tone or noise masker
located at bin (reorganized during step 3). Tonal masker
thresholds are given by

(dB SPL) (30)

where denotes the SPL of the tonal masker in fre-
quency bin , denotes the Bark frequency of bin[(3)],
and the spread of masking from masker binto maskee bin
, , is modeled by the expression

(dB SPL) (31)

i.e., as a piecewise linear function of masker level and
Bark maskee-masker separation .
approximates the basilar spreading (excitation pattern) de-
scribed in Section II-C. Prototype individual masking thresh-
olds are shown as a function of masker level in
Fig. 11(b) for an example tonal masker occurring at
Barks. As shown in Fig. 11, the slope of decreases
with increasing masker level. This is a reflection of psy-
chophysical test results, which have demonstrated [42] that
the ear’s frequency selectivity decreases as stimulus levels
increase. It is also noted here that the spread of masking
in this particular model is constrained to a 10-Bark neigh-
borhood for computational efficiency. This simplifying as-
sumption is reasonable given the very low masking levels
that occur in the tails of the excitation patterns modeled by

. Fig. 11(c) shows the individual masking thresh-
olds [(30)] associated with the tonal maskers in Fig. 11(a)
(“x”). It can be seen here that the pair of maskers identi-
fied near 19 Barks has been replaced by the stronger of the
two during the decimation phase. The plot includes the abso-

lute hearing threshold for reference. Individual noise masker
thresholds are given by

(dB SPL) (32)

where denotes the SPL of the noise masker in fre-
quency bin , denotes the Bark frequency of bin[(3)],
and is obtained by replacing with
everywhere in (31). Fig. 11(d) shows the individual masking
thresholds associated with the noise maskers identified in
step 2 [Fig. 11(a) “o”]. It can be seen in Fig. 11(d) that the two
high-frequency noise maskers that occur below the absolute
threshold have been eliminated. Before we proceed to step 5
and compute a global masking threshold, it is worthwhile to
consider the relationship between (8) and (30), as well as the
connection between (9) and (32). Equations (8) and (30) are
related in that both model the TMN masking paradigm (Sec-
tion II-C) in order to generate a masking threshold for quanti-
zation noise masked by a tonal signal component. In the case
of (8), a Bark-dependent offset that is consistent with exper-
imental TMN data for the threshold minimum SMR is sub-
tracted from the masker intensity, namely, the quantity 14.5

. In a similar manner, (30) estimates for a quantization
noise maskee located in binthe intensity of the masking
contribution due the tonal masker located in bin. Like (8),
the psychophysical motivation for (30) is the desire to model
the relatively weak masking contributions of a TMN. Unlike
(8), however, (30) uses an offset of only , i.e.,
(30) assumes a smaller minimum SMR at threshold than does
(8). The connection between (9) and (32) is analogous. In the
case of this equation pair, however, the psychophysical moti-
vation is to model the masking contributions of NMT. Equa-
tion (9) assumes a Bark-independent minimum SMR of 3–5
dB, depending on the value of the parameter. Equation
(32), on the other hand, assumes a Bark-dependent threshold
minimum SMR of dB. Also, whereas the
spreading function (SF) terms embedded in (30) and (32) ex-
plicitly account for the spread of masking, (8) and (9) assume
that the spread of masking was captured during the compu-
tation of the terms and , respectively.

Step 5—Calculation of Global Masking Thresholds:In
this step, individual masking thresholds are combined to es-
timate a global masking threshold for each frequency bin in
the subset given by (29). The model assumes that masking
effects are additive. The global masking threshold is
therefore obtained by computing the sum

(dB SPL) (33)

where
absolute hearing threshold for frequency
bin ;

and individual masking thresholds from step
4;
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Fig. 12. Magnitude response, oddly stacked uniformM -band filter bank.

and numbers of tonal and noise maskers, re-
spectively, identified during step 3.

In other words, the global threshold for each frequency bin
represents a signal-dependent, power-additive modification
of the absolute threshold due to the basilar spread of all tonal
and noise maskers in the signal power spectrum. Fig. 11(e)
shows the global masking threshold obtained by adding
the power of the individual tonal [Fig. 11(c)] and noise
[Fig. 11(d)] maskers to the absolute threshold in quiet.

III. T IME-FREQUENCYANALYSIS: FILTER BANKS AND

TRANSFORMS

All audio codecs (Fig. 1) rely upon some type of time-fre-
quency analysis block to extract from the time-domain input
a set of parameters that is amenable to quantization and en-
coding in accordance with a perceptual distortion metric. The
tool most commonly employed for this mapping is the filter
bank, which is a parallel bank of bandpass filters covering the
entire spectrum. The filter bank divides the signal spectrum
into frequency subbands and generates a time-indexed series
of coefficients representing the frequency-localized signal
power within each band. By providing explicit information
about the distribution of signal and hence masking power
over the time-frequency plane, the filter bank plays an es-
sential role in the identification of perceptual irrelevancies
when used in conjunction with a perceptual model. At the
same time, the time-frequency parameters generated by the
filter bank provide a signal mapping that is conveniently ma-
nipulated to shape the coding distortion in order to match the
observed time-frequency distribution of masking power. In
other words, the filter bank facilitates psychoacoustic anal-
ysis as well as perceptual noise shaping. Additionally, by
decomposing the signal into its constituent frequency com-
ponents, the filter bank also assists in the reduction of sta-
tistical redundancies. An example magnitude response asso-
ciated with a uniform bandwidth -channel filter bank is
shown in Fig. 12. The analysis filters have normalized
center frequencies , and are characterized by
individual impulse responses , as well as frequency re-
sponses , for .

Filter banks for audio coding such as the one characterized
by the magnitude response of Fig. 12 are perhaps most con-
veniently described in terms of an analysis–synthesis frame-
work (Fig. 13), in which the input signal is processed at
the encoder by a parallel bank of th order finite im-

pulse response (FIR) bandpass filters . The bandpass
analysis outputs

(34)

are decimated by a factor of , yielding the subband se-
quences

(35)

which comprise acritically sampledor maximally decimated
signal representation, i.e., the number of subband samples
is equal to the number of input samples. Because it is im-
possible to achieve perfect “brickwall” magnitude responses
with finite order bandpass filters, there is unavoidable
aliasing between the decimated subband sequences. Quanti-
zation and coding are performed on the subband sequences,

. In the perceptual audio codec, the quantization noise
is usually shaped according to a perceptual model. The
quantized subband samples are eventually received
by the decoder, where they are upsampled byto form the
intermediate sequences

otherwise.
(36)

In order to eliminate the imaging distortions introduced by
the upsampling operations, the sequences are pro-
cessed by a parallel bank of synthesis filters, , and then
the filter outputs are combined to form the overall output

. The analysis and synthesis filters are carefully designed
to cancel aliasing and imaging distortions. It can be shown
[69] that the overall transfer function of the filter bank is
given by

(37)

For perfect reconstruction filter banks, the output will
be identical to the input within a delay, i.e.,
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Fig. 13. UniformM -band maximally decimated analysis–synthesis filter bank.

, as long as there is no quantization noise intro-
duced, that is, as long as . This is naturally not
the case for a codec, and therefore quantization sensitivity is
an important filter bank property, since PR guarantees are
lost in the presence of quantization.

This section provides a perspective on filter bank design
considerations, architectures, and special techniques of
particular importance in audio coding. This section is
organized as follows. First, filter bank design issues for
audio coding are addressed. Next, important details on the

-band pseudo-QMF and MDCT filter banks are given.
The MDCT is a PR cosine modulated filter bank that has
become of central importance in modern audio compression
algorithms. Finally, the time-domain “pre-echo” artifact is
examined in conjunction with pre-echo control techniques.
Beyond the references cited below, the reader in need of
greater detail or further analytical development is referred
to in-depth tutorials on filter banks that have appeared in the
literature [65], [66], as well as in classical [67] and recent
texts [68]–[70]. The reader may also wish to explore the
connection between filter banks and wavelets that has been
well documented in the literature [71], [72] and in several
texts [69], [73], [74], [152]. These notions are of particular
relevance in the case of audio codecs that make use of
discrete wavelet and wavelet packet analysis.

A. Filter Banks for Audio Coding: Design Considerations

The choice of an appropriate filter bank is critical to
the success of a perceptual audio coder. Efficient coding
performance depends heavily on adequately matching the
properties of the analysis filter bank to the characteristics of
the input signal [75]. Algorithm designers face an important
and difficult tradeoff between time and frequency resolution
when selecting a filter bank structure [76]. Failure to choose
a suitable filter bank can result in perceptible artifacts in the
output (e.g., pre-echoes) or impractically low coding gain
and attendant high bit rates. No single resolution tradeoff is
optimal for all signals. This dilemma is illustrated in Fig. 14
utilizing schematic representations of masking thresholds
with respect to time and frequency for (a) a castanets and (b)

(a)

(b)

Fig. 14. Masking thresholds in the time-frequency plane: (a)
castanets and (b) piccolo (after [201]).

a piccolo. In the figures, darker regions correspond to higher
masking thresholds. To realize maximum coding gain,
the strongly harmonic piccolo signal clearly calls for fine
frequency resolution and coarse time resolution, because the
masking thresholds are quite localized in frequency, but are
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also essentially time-invariant. Quite the opposite is true of
the castanets. The fast attacks associated with this percussive
sound create highly time-localized masking thresholds that
are also widely disbursed in frequency. Therefore, adequate
time resolution is essential for accurate estimation of the
highly time-varying masked threshold.

Unfortunately, most audio source material is highly non-
stationary and contains significant tonal and atonal energy,
as well as both steady-state and transient intervals. As a rule,
signal models [33] tend to remain constant for long periods
and then change suddenly. Therefore, the ideal coder should
make adaptive decisions regarding optimal time-frequency
signal decomposition, and the ideal analysis filter bank
would have time-varying resolutions in both the time and
frequency domains. This fact has motivated many algorithm
designers to experiment with switched and hybrid filter bank
structures, with switching decisions occurring on the basis
of the changing signal properties. Filter banks emulating the
analysis properties of the human auditory system, i.e., those
containing nonuniform “critical bandwidth” subbands, have
proven highly effective in the coding of highly transient
signals such as the castanets or glockenspiel. For dense
harmonically structured signals such as the harpsichord
or pitch pipe, on the other hand, the “critical band” filter
banks have been less successful because of their reduced
coding gain relative to filter banks with a large number of
subbands. In short, a number of bank characteristics are
highly desirable for audio coding

• signal adaptive time-frequency tiling;
• low-resolution “critical-band” mode, e.g., 32 subbands;
• high-resolution mode, up to 4096 subbands;
• efficient resolution switching;
• minimum blocking artifacts;
• good channel separation;
• strong stopband attenuation;
• perfect reconstruction;
• critical sampling;
• availability of fast algorithms.

Good channel separation and stopband attenuation are partic-
ularly desirable for signals containing very little irrelevancy
such as the harpsichord. Maximum redundancy removal is
essential for maintaining high quality at low bit rates for
these signals. Blocking artifacts in time-varying filter banks
can lead to audible distortion in the reconstruction. The next
two sections, respectively, give some important results on the
nearly PR and PR cosine-modulated filter bank architectures
that have become of central importance in modern audio
coding standards, with particular emphasis on the MDCT. In
light of the foregoing discussion on time-frequency resolu-
tion, methods for constructing time-varying, signal-adaptive
tilings of the time-frequency plane using the MDCT are ad-
dressed.

B. Cosine Modulated “Pseudo —QMF” M-Band Banks

Cosine modulation of a lowpass prototype filter has been
used since the early 1980’s [77]–[81] to realize parallel
M-channel filter banks with nearly perfect reconstruction.

Because they do not achieve perfect reconstruction, these
filter banks are known collectively as “pseudo-QMF,”
(PQMF) and they are characterized by the following attrac-
tive properties:

• constrained design; single FIR prototype filter;
• overall linear phase, and hence constant group delay;
• amenable to fast, block algorithms;
• uniform, linear phase channel responses;
• low complexity = one filter plus modulation;
• critical sampling.

In the PQMF bank derivation [68, ch. 8], phase distortion
is completely eliminated from the overall transfer function,
(37), because the analysis and synthesis filters are forced to
satisfy the mirror image condition

(38)

Moreover, adjacent channel aliasing is cancelled by estab-
lishing precise relationships between the analysis and syn-
thesis filters and , respectively. In the critically
sampled analysis–synthesis notation of Fig. 13, these condi-
tions ultimately yield analysis filters given by

(39)
and synthesis filters given by

(40)
where

(41)

and the sequence corresponds to the -sample
“window,” a real-coefficient, linear phase FIR prototype
low-pass filter, with normalized cutoff frequency 2 .
Given that aliasing and phase distortions have been elimi-
nated in this formulation, the filter bank design procedure is
reduced to the design of the window, , such that overall
amplitude distortion is minimized. Examples can be found
in [68].

The PQMF bank has played a significant role in the
evolution of modern audio codecs. The ISO IS11172-3
and IS13818-3 algorithms (“MPEG-1” [17] and “MPEG-2
BC/LSF” [18]) employ a 32-channel PQMF bank for spec-
tral decomposition in layers I–II. The prototype filter
contains 512 samples, yielding better than 96-dB sidelobe
suppression in the stopband of each analysis channel. Output
ripple (non-PR) is less than 0.07 dB. In addition, the same
PQMF bank is used in conjunction with a PR cosine mod-
ulated filter bank in layer III (see Section VI-A) to form a
hybrid filter bank architecture with time-varying properties.
The MPEG-1 algorithm has reached a position of promi-
nence with the widespread use of “.MP3” files (MPEG-1,
layer 3) on the Web for the exchange of audio recordings, as
well as with the deployment of MPEG-1, layer II in direct
broadcast satellite (DBS/DSS) and European digital audio
broadcast (DBA) initiatives. Because of the availability of
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common algorithms for PQMF and PR QMF banks, we
defer the discussion on generic complexity and efficient
implementation strategies until later. In the particular case
of MPEG-1, however, note that the 32-band PQMF analysis
bank as defined in the standard requires approximately 80
real multiplies and 80 real additions per output sample [17],
although a more efficient implementation based on a fast
algorithm for the DCT was also proposed [82], [398].

C. Cosine Modulated PR M-Band Banks and the MDCT

Although PQMF banks have been used quite successfully
in perceptual audio coders, the overall system design still
must compensate for the inherent distortion induced by the
lack of perfect reconstruction to avoid audible artifacts in the
codec output. The compensation strategy may be a simple
one (e.g., increased prototype filter length), but perfect re-
construction is actually preferable because it constrains the
sources of output distortion to the quantization stage. Begin-
ning in the early 1990’s, independent work by Malvar [83],
Ramstad [84], and Koilpillai and Vaidyanathan [85], [86],
showed that, in fact, generalized PR cosine modulated filter
banks are possible when the prototype low-pass filter
and synthesis filters , for , are ap-
propriately constrained. These researchers formulated gen-
eralized PR cosine modulated filter banks that are of con-
siderable interest in many applications. This section of the
paper, however, concentrates on the special case that has be-
come of central importance in the advancement of modern
perceptual audio coding algorithms, namely, the filter bank
for which . The PR properties of this special case
were first demonstrated by Princen and Bradley [87] using
time-domain arguments for the development of the time-do-
main aliasing cancellation (TDAC) filter bank. Later, Malvar
[88] developed the modulated lapped transform (MLT) by re-
stricting attention to a particular prototype filter and formu-
lating the filter bank as a lapped orthogonal block transform.
More recently, the consensus name in the audio coding lit-
erature for the lapped block transform interpretation of this
special-case filter bank has evolved into the modified dis-
crete cosine transform. To avoid confusion, we will denote
throughout the remainder of this document by “MDCT” the
PR cosine modulated filter bank with , and we will
place some restrictions on the window . In short, the
reader should be aware that the different acronyms TDAC,
MLT, and MDCT all refer essentially to the same PR co-
sine modulated filter bank. Only Malvar’s MLT label implies
a particular choice for , as described below. From the
perspective of an analysis–synthesis filter bank (Fig. 13), the
MDCT analysis filter impulse responses are given by

(42)
and the synthesis filters, to satisfy the overall linear phase
constraint, are obtained by a time reversal, i.e.,

(43)

This perspective is useful for visualizing individual channel
characteristics in terms of their impulse and frequency re-
sponses. In practice, however, the filter bank is realized as a
block transform.

1) Forward and Inverse MDCT:The analysis filter bank
is realized using a block transform of length 2samples and
a block advance of only samples, i.e., with 50% overlap
between blocks. Thus, the MDCT basis functions extend
across two blocks in time, leading to virtual elimination
of the blocking artifacts that plague the reconstruction of
nonoverlapped transform coders. Despite the 50% overlap,
however, the MDCT is still critically sampled, and only

coefficients are generated by the forward transform for
each 2 -sample input block. Given an input block ,
the transform coefficients for are
obtained by means of the forward MDCT, defined as

(44)

Clearly, the forward MDCT performs a series of inner prod-
ucts between the analysis filter impulse responses
and the input . On the other hand, the inverse MDCT ob-
tains a reconstruction by computing a sum of the basis vec-
tors weighted by the transform coefficients from two blocks.
The first -samples of the th basis vector, for

, are weighted by theth coefficient of the current
block, . Simultaneously, the second-samples of the

th basis vector, for , are weighted
by the th coefficient of the previous block . Then, the
weighted basis vectors are overlapped and added at each time
index . Note that the extended basis functions require the in-
verse transform to maintain an -sample memory to retain
the previous set of coefficients. Thus, the reconstructed sam-
ples for , are obtained via the inverse
MDCT, defined as

(45)

where denotes the previous block of transform coef-
ficients. The overlapped analysis and overlap-add synthesis
processes are illustrated in Fig. 15.

Given the forward [(44)] and inverse [(45)] transform def-
initions, one still must design a suitable FIR prototype filter

. For the MDCT, the generalized PR conditions [68]
can be reduced to linear phase and Nyquist constraints on
the window, namely

(46a)

and

(46b)

for the sample indexes Note that it is pos-
sible to modify these constraints and reformulate the MDCT
with unique analysis and synthesis windows [89] using a
biorthogonal construction. Several general purpose orthog-
onal [87], [88], [90] and biorthogonal [91]–[93] windows
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(a)

(b)

Fig. 15. MDCT: (a) lapped forward transform (analysis)—2M
samples are mapped toM spectral components [(44)]. Analysis
block length is 2M samples, but analysis stride (hop size) and time
resolution areM -samples. (b) Inverse transform (synthesis)—M
spectral components are mapped to a vector of 2M samples [(45)]
that is overlapped byM samples and added to the vector of 2M
samples associated with the previous frame.

have been proposed, while still other orthogonal [94], [112],
[268], [362] and biorthogonal [89], [95] windows are opti-
mized explicitly for audio coding.

2) Example Windows:It is instructive to consider some
example MDCT windows. Malvar [88] denotes by “MLT”
the MDCT filter bank that makes use of the “sine” window,
defined as

(47)

for This particular window is perhaps
the most popular in audio coding. It appears, for example,
in the MPEG-1, Layer 3 (MP3) hybrid filter bank [17],
the MPEG-2 AAC/MPEG-4 T-F filter bank [112], and
numerous experimental coders proposed elsewhere. The
sine window has several unique properties that make it
advantageous. In particular, dc energy is concentrated in
a single coefficient, the filter bank channels have 24-dB
sidelobe attenuation, and it can be shown [88] that the MLT
is asymptotically optimal in terms of coding gain [64].
Optimization criteria other than coding gain or dc localiza-
tion have also been investigated. Ferreira [94] proposed a
parametric window that offers a controlled tradeoff between
reduction of the time-domain ringing artifacts produced
by coarse quantization and reduction of stopband leakage
relative to the sine window. The Ferreira window has a
broader range of better than 110 dB attenuation than does
the sine window. Improved ultimate stopband rejection can
be beneficial for perceptual gain, particularly for strongly
harmonic signals. This realization motivated the designers
of the Dolby AC-2/AC-3 [362] and MPEG-2 AAC/MPEG-4
T-F [112] algorithms to use a customized window rather
than the standard sine window. The so-called Kaiser–Bessel
derived (KBD) window was obtained in a procedure devised
at Dolby Laboratories. During the development of the AC-2
and AC-3 algorithms, novel prototype filters were optimized

to satisfy a minimum masking template [e.g., Fig. 16(b)
for AC-3]. At the expense of some passband selectivity,
the KBD windows achieve considerably better stopband
attenuation than the sine window [Fig. 16(b)]. Thus, for
a pure tone occurring at the center of a particular MDCT
channel, the KBD filter bank concentrates more energy
into a single transform coefficient. The remaining dispersed
energy tends to lie below a worst-case pure tone excitation
pattern [“masking template”—Fig. 16(b)]. For signals with
adequately spaced tonal components, the presence of fewer
suprathreshold MDCT components reduces the perceptual
bit allocation.

3) Time-Varying Windows:One final point regarding
MDCT window design is of particular importance for
perceptual audio coders. As the introduction (Section III-A)
illustrated through the pathological cases of tonal and noisy
signals, the characteristics of the “best” filter bank for
audio are signal specific and therefore time varying. In
practice, it is very common for codecs using the MDCT
(e.g., MPEG-1 [17], MPEG-2 AAC [112], etc.) to change
the window length to match the signal properties of the
input. A long window is used to maximize coding gain and
achieve good channel separation during segments identi-
fied as stationary, and a short window is used to localize
time-domain artifacts when pre-echoes are likely. Because
of the time overlap between basis vectors, either boundary
filters [96] or special transitional windows [97] are required
to preserve perfect reconstruction when window switching
occurs. Other schemes are also available [98], [99], but
for practical reasons these are not typically used. Both the
MPEG MDCT-based coders and the Dolby AC-3 algorithm
employ MDCT mode switching. Unlike MPEG, however,
AC-3 maintains perfect reconstruction without resorting to
transitional windows. The spectral and temporal analysis
tradeoffs involved in transitional window designs are well
illustrated in [106] for both the MPEG-1, layer 3 (MP3) [17]
and the Dolby AC-3 [362] filter banks.

4) Fast Algorithms, Complexity, and Implementation Is-
sues: One of the attractive properties that has contributed to
the widespread use of the MDCT, particularly in the stan-
dards, is the availability of FFT-based fast algorithms [100],
[101] that make the filter bank viable for real-time applica-
tions. For example, a unified fast algorithm [102] is avail-
able for the MPEG-1, -2, -4, and AC-3 long block MDCT,
the AC-3 short block MDCT, and the MPEG-1 PQMF bank.
A regressive structure suitable for parallel VLSI implemen-
tation of the (44) MDCT was also proposed [103]. As far as
quantization sensitivity is concerned, there are available ex-
pressions [104] for the reconstruction error of the quantized
system in terms of signal-correlated and uncorrelated com-
ponents that can be used to identify perceptually disturbing
reconstruction artifacts. Quantization issues for PR cosine
modulated filter banks in general are also addressed in [73].

D. Pre-Echo Distortion

An artifact known as pre-echo distortion can arise in trans-
form coders using perceptual coding rules. Pre-echoes occur
when a signal with a sharp attack begins near the end of a
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(a)

(b)

Fig. 16. Dolby AC-3 (solid) versus sine (dashed) MDCT windows:
(a) time-domain and (b) magnitude responses in relation to worst
case masking template.

transform block immediately following a region of low en-
ergy. This situation can arise when coding recordings of per-
cussive instruments such as the triangle, the glockenspiel, or
the castanets, for example [Fig. 17(a)]. For a block-based al-
gorithm, when quantization and encoding are performed in
order to satisfy the masking thresholds associated with the
block average spectral estimate, time-frequency uncertainty
dictates that the inverse transform will spread quantization
distortion evenly in time throughout the reconstructed block
[Fig. 17(b)]. This results in unmasked distortion throughout
the low-energy region preceding in time the signal attack at
the decoder. Although it has the potential to compensate for
pre-echo, temporal premasking of the distortion is possible
only if the transform block size is sufficiently small (minimal
coder delay, e.g., 2–5 ms). Percussive sounds are not the only
signals likely to produce pre-echoes. Such artifacts also often
plague coders when processing “pitched” signals containing
nearly impulsive bursts at the beginning of each pitch period,
e.g., the “German Male Speech” recording [110]. For a male
speaker with a fundamental frequency of 125 Hz, the interval

(a)

(b)

Fig. 17. Pre-echo example: (a) uncoded castanets and (b)
transform coded castanets, 2048-point block size.

between impulsive events is only 8 ms, which is much less
than the typical analysis block length. Several methods pro-
posed to eliminate pre-echoes are reviewed next.

E. Pre-Echo Control Strategies

Several methodologies have been proposed and suc-
cessfully applied in the effort to mitigate the pre-echoes
that tend to plague block-based coding schemes. This
section describes several of the most widespread techniques,
including the bit reservoir, window switching, gain modifi-
cation, switched filter banks, and temporal noise shaping.
Advantages and drawbacks associated with each method are
also discussed.

1) Bit Reservoir: Some coders [17], [307] utilize this
technique to satisfy the greater bit demand associated with
transients. Although most algorithms are fixed rate, the
instantaneous bit rates required to satisfy masked thresholds
on each frame are in fact time varying. Thus, the idea behind
a bit reservoir is to store surplus bits during periods of
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low demand, and then to allocate bits from the reservoir
during localized periods of peak demand, resulting in a
time-varying instantaneous bit rate but a fixed average bit
rate. One problem, however, is that very large reservoirs are
needed to deal satisfactorily with certain transient signals,
e.g., “pitched signals.” Particular bit reservoir implementa-
tions are addressed later in conjunction with the MPEG [17]
and PAC [307] standards.

2) Window Switching:First introduced by Edler [105],
this is also a popular method for pre-echo suppression, par-
ticularly in the case of MDCT-based algorithms. Window
switching works by changing the analysis block length from
“long” duration (e.g., 25 ms) during stationary segments to
“short” duration (e.g., 4 ms) when transients are detected. At
least two considerations motivate this method. First, a short
window applied to the frame containing the transient will
tend to minimize the temporal spread of quantization noise
such that temporal premasking effects might preclude audi-
bility. Second, it is desirable to constrain the high bit rates
associated with transients to the shortest possible temporal
regions. Although window switching has been successful
[17], [302], [307], it also has significant drawbacks. For one,
the perceptual model and lossless coding portions of the
coder must support multiple time resolutions. Furthermore,
most modern coders use the lapped MDCT. To satisfy PR
constraints, window switching typically requires transition
windows between the long and short blocks. Even when suit-
able transition windows (Fig. 18) satisfy the PR constraints,
they do so at the expense of poor time and frequency local-
ization properties [106], resulting in reduced coding gain.
Other difficulties inherent to window switching schemes
are increased coder delay, undesirable latency for closely
spaced transients (e.g., long-start–short-stop–start-short),
and impractical overuse of short windows for “pitched”
signals.

3) Hybrid, Switched Filter Banks:These have also been
used to counteract pre-echo distortion. In contrast to window
switching schemes, the hybrid and switched filter bank ar-
chitectures rely upon distinct filter bank modes. In hybrid
schemes (e.g., [201]), compatible filter bank elements are
cascaded in order to achieve the time-frequency tiling best
suited to the current input signal. Switched filter banks (e.g.,
[308]), on the other hand, make hard switching decisions on
each analysis interval in order to select a single monolithic
filter bank tailored to the current input. Examples of these
methods are given later in this document, along with some
discussion of their associated tradeoffs.

4) Gain Modification: This is yet another approach
[Fig. 19(a)] that has shown promise in the task of pre-echo
control [107], [108]. The gain modification procedure
smoothes transient peaks in the time-domain prior to
spectral analysis. Then, perceptual coding may proceed
as it does for normal, stationary blocks. Quantization
noise is shaped to satisfy masking thresholds computed
for the equalized long block without compensating for
an undesirable temporal spread of quantization noise. A
time-varying gain and the modification time interval are
transmitted as side information. Inverse operations are

Fig. 18. Example window switching scheme (MPEG-1, Layer III,
or “MP3”).

(a)

(b)

Fig. 19. (a) Gain modification and (b) TNS scheme.

performed at the decoder to recover the original signal. Like
the other techniques, caveats also apply to this method. For
example, gain modification effectively distorts the spectral
analysis time window. Depending upon the chosen filter
bank, this distortion could have the unintended consequence
of broadening the filter bank responses at low frequencies
beyond critical bandwidth. One solution for this problem is
to apply independent gain modifications selectively within
only frequency bands affected by the transient event. This
selective approach, however, requires embedding of the gain
blocks within a hybrid filter bank structure, which increases
coder complexity [109].

5) Temporal Noise Shaping:The final pre-echo control
technique considered in this section is temporal noise
shaping (TNS). As shown in Fig. 19(b), TNS [110] is a
frequency-domain technique that operates on the spectral co-
efficients generated by the analysis filter bank. TNS is
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applied only during input attacks susceptible to pre-echoes.
The idea is to apply linear prediction (LP) across frequency
(rather than time), since for an impulsive time signal, fre-
quency-domain coding gain is maximized using prediction
techniques. The method works as follows. Parameters of
a spectral LP “synthesis” filter are estimated via
application of standard minimum MSE estimation methods
(e.g., Levinson–Durbin [64]) to the spectral coefficients

. The resulting prediction residual is quantized
and encoded using standard perceptual coding according
to the original masking threshold. Prediction coefficients
are transmitted to the receiver as side information to allow
recovery of the original signal. The convolution operation
associated with spectral domain prediction is associated
with multiplication in time. In a manner analogous to the
source-system separation realized by LP analysis in the
time-domain for traditional speech codecs, therefore, TNS
effectively separates the time-domain waveform into an
envelope and temporally flat “excitation.” Then, because
quantization noise is added to the flattened residual, the
time-domain multiplicative envelope corresponding to
shapes the quantization noise such that it follows the original
signal envelope.

Quantization noise for the castanets applied to a
DCT-based coder is shown in Fig. 20(a) and (b) both
without and with TNS active, respectively. TNS clearly
shapes the quantization noise to follow the input signal’s
energy envelope. TNS mitigates pre-echoes since the error
energy is now concentrated in the time interval associated
with the largest masking threshold. Although they are related
as time-frequency dual operations, TNS is advantageous rel-
ative to gain shaping because it is easily applied selectively
in specific frequency subbands. Moreover, TNS has the
advantages of compatibility with most filter bank structures
and manageable complexity. Unlike window switching
schemes, for example, TNS does not require modification
of the perceptual model or lossless coding stages to a new
time-frequency mapping. TNS was reported in [110] to
dramatically improve performance on a five-point mean
opinion score (MOS) test from 2.64 to 3.54 for a particularly
troublesome pitched signal “German Male Speech” for
the MPEG-2 nonbackward compatible (NBC) coder [110].
A MOS improvement of 0.3 was also realized for the
well-known “Glockenspiel” test signal. This ultimately led
to the adoption of TNS in the MPEG NBC scheme [111],
[112].

IV. TRANSFORMCODERS

Transform coding algorithms for high-fidelity audio
make use of unitary transforms for the time/frequency
analysis section in Fig. 1. These algorithms typically
achieve high-resolution spectral estimates at the expense
of adequate temporal resolution. Many transform coding
schemes for wide-band and high-fidelity audio have been
proposed, starting with some of the earliest perceptual audio
codecs. In the mid-1980’s, Krahe applied psychoacoustic bit
allocation principles to a transform coding scheme [113],

(a)

(b)

Fig. 20. Temporal noise shaping example showing quantization
noise and the input signal energy envelope for castanets: (a) without
TNS and (b) with TNS.

[114]. Schroeder [3] later extended these ideas into multiple
adaptive spectral audio coding (MSC). The MSC utilizes a
1024-point DFT, then groups coefficients into 26 subbands,
inspired by the critical bands of the ear. DFT magnitude and
phase components are quantized and encoded in a two-step
successive refinement procedure that relies upon a percep-
tual bit allocation. Schroeder reported nearly transparent
coding of CD-quality audio at 132 kb/s [3]. Work along
these lines has continued, ultimately becoming integral to
the current state-of-the-art audio coding standards, although
as noted in Section I-B, modern coders making use of the
MDCT and other modulated filter banks for high-resolution
spectral analysis are in fact subband rather than transform
coders. Strictly speaking, the algorithms described in this
section that make use of modulated filter banks (e.g.,
ASPEC, DPAC, TwinVQ) should be called “high-resolution
subband coders” rather than transform coders. Also as noted
in Section I-B, the source of this confusion has in some
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Fig. 21. OCF encoder (after [116]).

cases been the block transform realizations typically used
for cosine modulated filter banks. This section describes
the individual contributions of Schroeder (MSC) [3], Bran-
denburg (OCF) [5], [115], [116], Johnston (PXFM/hybrid
coder) [6], [8], and Mahieux [118], [119]. Much of this
work became connected with MPEG standardization, and
ISO/IEC eventually clustered these schemes into a single
candidate algorithm, “Adaptive Spectral Entropy Coding of
High Quality Music Signals” (ASPEC) [9], which is part of
the ISO/IEC MPEG-1 [17] and the MPEG-2/BC-LSF [18]
audio coding standards. In fact, most of MPEG-1 Layer
III (MP3) and MPEG-2/BC-LSF Layer III is derived from
ASPEC. The remainder of this section addresses other
novel transform coding schemes that have appeared, not
necessarily associated with ASPEC.

A. Optimum Coding in the Frequency Domain (OCF-1,
OCF-2, OCF-3)

Brandenburg in 1987 proposed a 132-kb/s algorithm
known as “Optimum Coding in the Frequency Domain”
(OCF) [5] which is in some respects similar to the well
known “Adaptive Transform Coder” (ATC) for speech. OCF
(Fig. 21) works as follows. The input signal is first buffered
into 512 sample blocks and transformed to the frequency
domain using the DCT. Next, transform components are
quantized and entropy coded. A single quantizer is used
for all transform components. Adaptive quantization and
entropy coding work together in an iterative procedure
to achieve a fixed bit rate. In the inner loop of Fig. 21,
the quantizer step size is iteratively increased and a new
entropy-coded bit stream is formed at each update until the
desired bit rate is achieved. Increasing the step size at each
update produces fewer levels, which in turn reduces the bit
rate.

Using a second iterative procedure, a perceptual analysis
is introduced after the inner loop is done. First, critical band
analysis is applied. Then, a masking function is applied that
combines a flat 6-dB masking threshold with an interband
masking threshold, leading to an estimate of JND for each
critical band. If after inner loop quantization and entropy
encoding the measured distortion exceeds JND in at least
one critical band, quantization step sizes are adjusted only

in the out-of-tolerance critical bands. The outer loop repeats
until JND criteria are satisfied or a maximum loop count
is reached. Entropy coded transform components are then
transmitted to the receiver, along with side information.

Brandenburg in 1988 reported an enhanced OCF (OCF-2),
which achieved subjective quality improvements at a re-
duced bit rate of only 110 kb/s [115]. The improvements
were realized by replacing the DCT with the modified DCT
(Section III-C) and adding a pre-echo detection/compensa-
tion scheme. OCF-2 contains the first reported application
of the MDCT to audio coding. The 50% time overlap
associated with the MDCT increases the effective time
resolution and, consequently, improves the reconstruction
quality. OCF-2 quality is also improved for difficult signals
such as the triangle and castanets by using a simple pre-echo
detection/compensation scheme. OCF-2 was reported to
achieve transparency over a wide variety of source material.
In 1988, Brandenburg reported further OCF enhancements
(OCF-3) in which better quality was realized at a lower
bit rate (64 kb/s) with reduced complexity [116]. This was
achieved through differential coding of spectral components,
an enhanced psychoacoustic model modified to account for
temporal masking, and an improved rate-distortion loop.

B. Perceptual Transform Coder (PXFM)

While Brandenburg developed OCF, similar work was
simultaneously underway at AT&T Bell Labs. Johnston
[6] developed several DFT-based transform coders for
audio during the late 1980’s that became an integral part
of the ASPEC proposal. Johnston’s work in perceptual
entropy forms the basis for a transform coder reported in
1988 [6] that achieves transparent coding of FM-quality
monaural audio signals (Fig. 22). The idea behind the
perceptual transform coder (PXFM) is to estimate the
amount of quantization noise that can be inaudibly injected
into each transform domain subband using PE estimates.
The coder works as follows. The signal is first windowed
into overlapping (1/16) segments and transformed using
a 2048-point FFT. Next, the PE procedure described in
Section I is used to estimate JND thresholds for each critical
band. Then, an iterative quantization loop adapts a set of
128 subband quantizers to satisfy the JND thresholds until
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Fig. 22. PXFM encoder (after [6]).

the fixed bit rate is achieved. Finally, quantization and bit
packing are performed. Quantized transform components
are transmitted to the receiver along with appropriate side
information. Quantization subbands consist of eight-sample
blocks of complex-valued transform components. In 1989,
Johnston extended the PXFM coder to handle stereophonic
signals (SEPXFM) and attained transparent coding of a
CD-quality stereophonic channel at 192 kb/s. SEPXFM
[117] realizes performance improvements over PXFM by
exploiting inherent stereo cross-channel redundancy. The
SEPXFM structure is similar to that of PXFM, with variable
radix bit packing replaced by adaptive entropy coding. Side
information is therefore reduced to include only adjusted
JND thresholds (step-sizes) and pointers to the entropy
codebooks used in each transform domain subband. One of
six entropy codebooks is selected for each subband based
on the average component magnitude.

C. Brandenburg–Johnston Hybrid Coder

Johnston and Brandenburg [8] collaborated in 1990 to
produce a hybrid coder that, strictly speaking, is both a sub-
band and transform coding algorithm. It is included in this
section because it was part of the ASPEC cluster. The idea
behind the hybrid coder is to improve time and frequency
resolution relative to OCF and PXFM by constructing a filter
bank that more closely resembled the auditory filter bank.
This is accomplished at the encoder by first splitting the
input signal into four octave-width subbands using a QMF
filter bank. The decimated output sequence from each sub-
band is then followed by one or more transforms to achieve
the desired time/frequency resolution [Fig. 23(a)]. Both
DFT and MDCT methods were investigated. Given the tiling
of the time-frequency plane shown in Fig. 23(b), frequency
resolution at low frequencies (23.4 Hz) is well matched to
the ear, while the time resolution at high frequencies (2.7
ms) is sufficient for pre-echo control. The quantization and
coding schemes of the hybrid coder combine elements from
both PXFM and OCF. Masking thresholds are estimated
using the PXFM approach for eight time slices in each fre-
quency subband. A more sophisticated tonality estimate was
defined to replace the SFM [(13)] used in PXFM, however,
such that tonality is estimated in the hybrid coder as a local
characteristic of each individual spectral line. Predictability
of magnitude and phase spectral components across time
is used to evaluate tonality instead of just global spectral
shape within a single frame. High temporal predictability
of magnitudes and phases is associated with the presence

of a tonal signal. In contrast, low predictability implies the
presence of a noise-like signal. The hybrid coder employs
a quantization and coding scheme borrowed from OCF.
The hybrid coder without any explicit pre-echo control
mechanism was reported to achieve quality better than or
equal to OCF-3 at 64 kb/s [8]. The only disadvantage noted
by the authors was increased complexity. A similar hybrid
structure was eventually adopted in MPEG-1 and -2 Layer
III.

D. CNET Coder

During the same period in which Schroeder, Brandenburg,
and Johnston pursued optimal transform coding algorithms,
so too did several CNET researchers. In 1989, Mahieuxet al.
proposed a DFT-based audio coding system that introduced a
novel scheme to exploit DFT interblock redundancy. Nearly
transparent quality was reported for 15 kHz (FM-grade)
audio at 96 kb/s [118], except for some highly harmonic
signals. The encoder applies first-order backward-adaptive
predictors (across time) to DFT magnitude and differential
phase components, then quantizes separately the prediction
residuals. Magnitude and differential phase residuals are
quantized using an adaptive nonuniform pdf-optimized
quantizer designed for a Laplacian distribution and an
adaptive uniform quantizer, respectively. Bits are allocated
during step-size adaptation to shape quantization noise such
that a psychoacoustic noise threshold is satisfied for each
block. The use of linear prediction is justified because it
exploits magnitude and differential phase time redundancy,
which tends to be large during periods when the audio
signal is quasi-stationary, especially for signal harmonics. A
similar technique was eventually embedded in the MPEG-2
AAC algorithm. In 1990, Mahieux and Petit reported on the
development of a similar MDCT-based transform coder for
which they reported transparent CD-quality at 64 kb/s [119].
This algorithm introduced a novel “spectrum descriptor”
scheme for representing the power spectral envelope. The
coder was reported to perform well for broad-band signals
with many harmonics but had some problems in the case
of spectrally flat signals. More recently, Mahieux and
Petit enhanced their 64-kb/s algorithm by incorporating a
sophisticated pre-echo detection and postfiltering scheme.
Pre-echo postfiltering and improved quantization schemes
resulted in a subjective score of 3.65 for two-channel stereo
coding at 64 kb/s per channel on the five-point CCIR impair-
ment scale. The CCIR J.41 reference audio codec (MPEG-1,
Layer-II) achieved a score of 3.84 at 384 kb/s/channel over
the same set of tests.
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Fig. 23. Brandenburg–Johnston coder: (a) filter bank structure and
(b) time/frequency tiling (after [8]).

E. ASPEC

The MSC, OCF, PXFM, AT&T hybrid, and CNET audio
transform coders were eventually clustered into a single
proposal by the ISO/IEC JTC1/SC2 WG11 committee.
As a result, Schroeder, Brandenburg, Johnston, Herre, and
Mahieux collaborated in 1991 to propose for acceptance as
the new MPEG audio compression standard a flexible coding
algorithm, ASPEC, which incorporated the best features of
each coder in the group [9]. ASPEC was claimed to produce
better quality than any of the individual coders at 64 kb/s.
The structure of ASPEC combines elements from all of its
predecessors. Like OCF and the CNET coder, ASPEC uses
the MDCT for time-frequency mapping. The masking model
is similar to that used in PXFM and the AT&T hybrid coder,
including the sophisticated tonality estimation scheme at
lower bit rates. The quantization and coding procedures
use the pair of nested loops proposed for OCF, as well as
the block differential coding scheme developed at CNET.
Moreover, long runs of masked coefficients are run-length
and Huffman encoded. Quantized scalefactors and trans-
form coefficients are Huffman coded also. Pre-echoes are
controlled using a dynamic window switching mechanism,
like the Thomson coder [105]. ASPEC offers several modes
for different quality levels, ranging from 64 to 192 kb/s
per channel. ASPEC ultimately formed the basis for Layer
III of the MPEG-1 and MPEG-2/BC-LSF standards. We
note that similar contributions were made in the area of
transform coding for audio outside the ASPEC cluster. For
example, Iwadareet al. reported on DCT-based [120] and
MDCT-based [11] perceptual adaptive transform coders that
control pre-echo distortion using adaptive window size.

F. DPAC

Other investigators have also developed promising
schemes for transform coding of audio. Paraskevas and
Mourjopoulos [121] reported on a differential perceptual
audio coder (DPAC), which makes use of a novel scheme for

exploiting long-term correlations. DPAC works as follows.
Input audio is transformed using the MDCT. A two-state
classifier then labels each new frame of transform coeffi-
cients as either a “reference” frame or a “simple” frame.
The classifier labels as “reference” the frames that contain
significant audible differences from the previous frame.
The classifier labels nonreference frames as “simple.”
Reference frames are quantized and encoded using scalar
quantization and psychoacoustic bit allocation strategies
similar to Johnston’s PXFM. Simple frames, however, are
subjected to coefficient substitution. Coefficients whose
magnitude differences with respect to the previous reference
frame are below an experimentally optimized threshold
are replaced at the decoder by the corresponding reference
frame coefficients. The encoder, then, replaces subthreshold
coefficients with zeros, thus saving transmission bits. Un-
like the interframe predictive coding schemes of Mahieux
and Petit, the DPAC coefficient substitution system is
advantageous in that it guarantees the “simple” frame
bit allocation will always be less than or equal to the bit
allocation that would be required if the frame was coded
as a “reference” frame. Superthreshold “simple” frame
coefficients are coded in the same way as reference frame
coefficients. DPAC performance was evaluated for frame
classifiers that utilized three different selection criteria.
Best performance was obtained while encoding source
material using a PE criterion. As far as overall performance
is concerned, NMR measurements were compared between
DPAC and Johnston’s PXFM algorithm at 64, 88, and 128
kb/s. Despite an average drop of 30%–35% in PE measured
at the DPAC coefficient substitution stage output relative to
the coefficient substitution input, comparative NMR studies
indicated that DPAC outperforms PXFM only below 88
kb/s, and then only for certain types of source material such
as pop or jazz music. The desirable PE reduction led to
an undesirable drop in reconstruction quality. The authors
concluded that DPAC may be preferable to algorithms such
as PXFM for low-bit-rate, nontransparent applications.

G. DFT Noise Substitution

Other coefficient substitution schemes have also been
proposed. Whereas DPAC exploits temporal correlation,
a substitution technique that exploits decorrelation was
recently devised for coding efficiently noise-like portions
of the spectrum. In a noise substitution procedure [122],
Schulz parameterizes transform coefficients corresponding
to noise-like portions of the spectrum in terms of average
power, frequency range, and temporal evolution, resulting
in an increased coding efficiency of 15% on average. A
temporal envelope for each parametric noise band is re-
quired because transform block sizes for most codecs are
much longer (e.g., 30 ms) than the human auditory system’s
temporal resolution (e.g., 2 ms). In this method, noise-like
spectral regions are identified in the following way. First,
least mean square (LMS) adaptive LP’s are applied to the
output channels of a multiband QMF analysis filter bank,
which has as input the original audio . A predicted
signal is obtained by passing the LP output sequences
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Fig. 24. TWIN-VQ encoder (after [125]).

through the QMF synthesis filter bank. Prediction is done
in subbands rather than over the entire spectrum to prevent
classification errors that could result if high-energy noise
subbands are allowed to dominate predictor adaptation,
resulting in misinterpretation of low-energy tonal subbands
as noisy. Next, the DFT is used to obtain magnitude ( ,

) and phase components ( , ) of the input
and prediction , respectively. Then, tonality

is estimated as a function of the magnitude and phase
predictability, i.e.,

(48)

where and are experimentally determined constants.
Noise substitution is applied to contiguous blocks of
transform coefficient bins for which is very small.
The 15% average bit savings realized using this method
in conjunction with transform coding are offset to a large
extent by a significant complexity increase resulting from
the additions of the adaptive linear predictors and a multi-
band analysis–synthesis QMF bank. As a result, the author
focused his attention on the application of noise substitution
to QMF-based subband coding algorithms.

H. DCT with Vector Quantization

For the most part, the algorithms described thus far rely
upon scalar quantization of transform coefficients. This is
not unreasonable, since scalar quantization in combination
with entropy coding can achieve very good performance. As
one might expect, however, vector quantization (VQ) has
also been applied to transform coding of audio, although
on a much more limited scale. Gersho and Chan investi-
gated VQ schemes for coding DCT coefficients subject to a
constraint of minimum perceptual distortion. They reported
on a variable rate coder [7], which achieves high quality in
the range of 55–106 kb/s for audio sequences bandlimited
to 15 kHz (32 kHz sample rate). After computing the DCT
on 512 sample blocks, the algorithm utilizes a novel multi-
stage tree-structured VQ (MSTVQ) scheme for quantization
of normalized vectors, with each vector containing four DCT

components. Bit allocation and vector normalization are de-
rived at both the encoder and decoder from a sampled power
spectral envelope, which consists of 29 groups of transform
coefficients. A simplified masking model assumes that each
sample of the power envelope represents a single masker.

Gersho and Chan later enhanced [123] their algorithm
by improving the power envelope and transform coefficient
quantization schemes. In the new approach to quantiza-
tion of transform coefficients, constrained-storage VQ
(CS-VQ) [124] techniques are combined with the MSTVQ
(CS-MSTVQ) from the original coder, allowing the new
coder to handle peak NMR requirements without imprac-
tical codebook storage requirements. The power envelope
samples are encoded using a two-stage process. The first
stage applies nonlinear interpolative VQ (NLIVQ). In the
second stage, segments of a power envelope residual are
encoded using a set of eight-, nine-, and ten-element TSVQ
quantizers. Relative to their first VQ/DCT coder, the authors
reported savings of 10–20 kb/s with no reduction in quality
due to the CS-VQ and NLIVQ schemes.

I. MDCT with Vector Quantization

More recently, Iwakamiet al. developed transform-do-
main weighted interleave vector quantization (TWIN-VQ),
an MDCT-based coder which also involves transform coeffi-
cient VQ [125], [126]. This algorithm exploits LPC analysis,
spectral interframe redundancy, and interleaved VQ. At
the encoder (Fig. 24), each frame of MDCT coefficients
is first divided by the corresponding elements of the LPC
spectral envelope, resulting in a spectrally flattened quotient
(residual) sequence. This procedure flattens the MDCT
envelope but does not affect the fine structure. The next step,
therefore, divides the first step residual by a predicted fine
structure envelope. This predicted fine structure envelope is
computed as a weighted sum of three previous quantized fine
structure envelopes, i.e., using backward prediction. Inter-
leaved VQ is applied to the normalized second step residual.
The interleaved VQ vectors are structured in the following
way. Each -sample normalized second step residual vector
is split into subvectors, each containing coeffi-
cients. Second-step residuals from the-sample vector are
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interleaved in the subvectors such that theth subvector
contains elements , where .
Perceptual weighting is also incorporated by weighting each
subvector by a nonlinearly transformed version of its corre-
sponding LPC envelope component prior to the codebook
search. VQ indexes are transmitted to the receiver. The
authors claimed higher subjective quality than MPEG-1
Layer II at 64 kb/s for 48-kHz CD-quality audio, as well as
higher quality than MPEG-1 Layer II for 32-kHz audio at
32 kb/s. More recently, TwinVQ performance at lower bit
rates has also been investigated. At least three trends were
identified during ISO-sponsored comparative tests [127] of
TwinVQ and MPEG-2 AAC (Section VIII-B). First, AAC
outperformed TwinVQ for bit rates above 16 kb/s. Second,
TwinVQ and AAC achieved similar performance at 16 kb/s,
with AAC having a slight edge. Finally, the performance of
TwinVQ exceeded that of AAC at a rate of 8 kb/s. These
results ultimately motivated a combined AAC/TwinVQ ar-
chitecture for inclusion in MPEG-4 [385] (Section VIII-C).
Enhancements to the weighted interleaving scheme and LPC
envelope representation are reported in [128] which enabled
real-time implementation of stereo decoders on Pentium
and PowerPC platforms. Channel error robustness issues are
addressed in [129].

V. SUBBAND CODERS

Like the transform coders described in Section IV, subband
coders also exploit signal redundancy and psychoacoustic ir-
relevancy in the frequency domain. Instead of unitary trans-
forms, however, these coders rely upon frequency-domain
representations of the signal obtained from banks of band-
pass filters. The audible frequency spectrum (20 Hz–20 kHz)
is divided into frequency subbands using a bank of band-
pass filters. The output of each filter is then sampled and
encoded. At the receiver, the signals are demultiplexed, de-
coded, demodulated, and then summed to reconstruct the
signal. Audio subband coders realize coding gains by ef-
ficiently quantizing and encoding the decimated output se-
quences from either PR or non-PR filter banks (Section III).
Efficient quantization methods usually rely upon psychoa-
coustically controlled dynamic bit allocation rules, which al-
locate bits to subbands in such a way that the reconstructed
output signal is free of audible quantization noise or other
artifacts. In a generic subband audio coder, the input signal
is first split into several uniform or nonuniform subbands
using some critically sampled, PR or non-PR filter bank.
Nonideal reconstruction properties in the presence of quanti-
zation noise are compensated for by utilizing subband filters
that have very good sidelobe attenuation, an approach that
usually requires high-order filters. Then, decimated output
sequences from the filter bank are normalized and quantized
over short, 2–10-ms blocks. Psychoacoustic signal analysis is
used to allocate an appropriate number of bits for the quan-
tization of each subband. The usual approach is to allocate
a just-sufficient number of bits to mask quantization noise
in each block while simultaneously satisfying some bit-rate
constraint. Since masking thresholds and hence bit allocation

requirements are time-varying, buffering is often introduced
to match the coder output to a fixed rate. The encoder sends
to the decoder quantized subband output samples, normal-
ization scale factors for each block of samples, and bit allo-
cation side information. Bit allocation may be transmitted as
explicit side information, or it may be implicitly represented
by some parameter such as the scalefactor magnitudes. The
decoder uses side information and scalefactors in conjunc-
tion with an inverse filter bank to reconstruct a coded version
of the original input.

Numerous subband coding algorithms for high-fidelity
audio have appeared in the literature since the late 1980’s. In
fact, as noted in Section I-B, essentially all modern coders
make use of modulated filter banks such as the PQMF
or MDCT (Sections III-B and III-C) for high-resolution
spectral analysis, particularly for steady-state signals. For
analysis of transient signals, on the other hand, a significant
number of modern algorithms employ other analysis tools,
such as the discrete wavelet packet transform. Typically
the DWPT decomposition tree is structured to emulate a
(low-resolution) critical band analysis with only 24 subbands
(e.g., coders described in Sections V-C and V-D). These
trends have inspired the proposal that the subband/transform
class labels for modern coders should be replaced with
the classifications of “low-resolution” and “high-resolu-
tion” subband coding [33]. This section focuses upon the
individual subband algorithms proposed by researchers
from the Institut fur Rundfunktechnik (IRT) [4], [133],
Philips Research Laboratories [134], and CCETT. Much
of this work was motivated by standardization activities
for the European Eureka-147 DBA system. The ISO/IEC
eventually clustered the IRT, Philips, and CCETT proposals
into a single candidate algorithm, “Masking Pattern Adapted
Universal Subband Integrated Coding and Multiplexing”
(MUSICAM) [10], [135], which competed successfully
for inclusion in the ISO/IEC MPEG-1 and MPEG-2 audio
coding standards. Consequently, most of MPEG-1 [17] and
MPEG-2 [18] layers I and II are derived from MUSICAM.
Other subband algorithms, proposed by Charbonnier and
Petit [130], Voros [131], and Tehet al. [132], are not dis-
cussed here. The first part of this section concentrates upon
MUSICAM and its antecedents, which ultimately led to the
creation of the MPEG audio standard. The second part of
this section describes recent audio coding research in which
time-invariant and time-varying signal adaptive filter banks
are constructed from DWT’s and DWPT’s, respectively.
This section ends with consideration of some novel hybrid
subband/sinusoidal structures that have shown promise.

A. MASCAM

The MUSICAM algorithm is derived from coders de-
veloped at IRT, Philips, and CNET. At IRT, Theileet al.
developed “Masking Pattern Adapted Subband Coding”
(MASCAM), a subband audio coder [4] based upon a
tree-structured QMF bank that was designed to mimic
the critical band structure of the auditory filter bank. The
coder has 24 nonuniform subbands, with bandwidths of
125 Hz below 1 kHz, 250 Hz in the range 1–2 kHz, 500
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Fig. 25. MUSICAM encoder (after [135]).

Hz in the range 2–4 kHz, 1 kHz in the range 4–8 kHz,
and 2 kHz from 8 to 16 kHz. The prototype filter has 64
taps. Subband output sequences are processed in 2-ms
blocks. A normalization scalefactor from each subband
is quantized and transmitted for each block. Subband bit
allocations are derived from a simplified psychoacoustic
analysis. The original coder reported in [4] considered only
in-band simultaneous masking. Later, as described in [133],
interband simultaneous masking and temporal masking were
added to the bit-rate calculation. Temporal postmasking is
exploited by updating scalefactors less frequently during
periods of signal decay. The MASCAM coder was reported
to achieve high-quality results for 15-kHz bandwidth input
signals at bit rates between 80–100 kb/s per channel. A
similar subband coder was developed at Philips during this
same period. As described by Veldhuiset al. in [134], the
Philips group investigated subband schemes based on 20-
and 26-band nonuniform filter banks. Like the original
MASCAM system, the Philips coder relies upon a highly
simplified masking model that considers only the upward
spread of simultaneous masking. Thresholds are derived
from a prototypical basilar excitation function under worst
case assumptions regarding the frequency separation of
masker and maskee. Within each subband, signal energy
levels are treated as single maskers. Given SNR targets due
to the masking model, uniform ADPCM is applied to the
normalized output of each subband. The Philips coder was
claimed to deliver high-quality coding of CD-quality signals
at 110 kb/s for the 26-band version and 180 kb/s for the
20-band version.

B. MUSICAM

Based primarily upon coders developed at IRT and
Phillips, the MUSICAM algorithm [10], [135] was suc-
cessful in the 1990 ISO/IEC competition [136] for a new
audio coding standard. It eventually formed the basis for
MPEG-1 and MPEG-2 audio layers I and II. Relative to its
predecessors, MUSICAM (Fig. 25) makes several practical
tradeoffs between complexity, delay, and quality. By uti-
lizing a uniform bandwidth, 32-band polyphase filter bank
instead of a tree-structured QMF bank, both complexity and
delay are greatly reduced relative to the IRT and Phillips
coders. Delay and complexity are 10.66 ms and 5 MFLOPS,
respectively. These improvements are realized at the expense

of using a suboptimal filter bank, however, in the sense that
filter bandwidths (constant 750 Hz for 48-kHz sample rate)
no longer correspond to the critical bands. Despite these
excessive filter bandwidths at low frequencies, high-quality
coding is still possible with MUSICAM due to its enhanced
psychoacoustic analysis. High-resolution spectral estimates
(46 Hz/line at 48-kHz sample rate) are obtained through the
use of a 1024-point FFT in parallel with the polyphase filter
bank. This parallel structure allows for improved estimation
of masking thresholds and hence determination of more
accurate minimum SMR’s required within each subband.
The MUSICAM psychoacoustic analysis procedure is
essentially the same as the MPEG-1 psychoacoustic model
1 described in Section VIII-G.

The remainder of MUSICAM works as follows. Subband
output sequences are processed in 8-ms blocks (twelve sam-
ples at 48 kHz), which is close to the temporal resolution
of the auditory system (4–6 ms). Scale factors are extracted
from each block and encoded using 6 bits over a 120-dB dy-
namic range. Occasionally, temporal redundancy is exploited
by repetition over two or three blocks (16 or 24 ms) of slowly
changing scale factors within a single subband. Repetition is
avoided during transient periods such as sharp attacks. Sub-
band samples are quantized and coded in accordance with
SMR requirements for each subband as determined by the
psychoacoustic analysis. Bit allocations for each subband are
transmitted as side information. On the CCIR five-grade im-
pairment scale, MUSICAM scored 4.6 (standard deviation
0.7) at 128 kb/s, and 4.3 (standard deviation 1.1) at 96 kb/s
per monaural channel, compared to 4.7 (standard deviation
0.6) on the same scale for the uncoded original. Quality was
reported to suffer somewhat at 96 kb/s for critical signals
which contained sharp attacks (e.g., triangle, castanets), and
this was reflected in a relatively high standard deviation of
1.1. MUSICAM was selected by ISO/IEC for MPEG audio
due to its desirable combination of high quality, reasonable
complexity, and manageable delay. Also, bit error robustness
was found to be very good (errors nearly imperceptible) up
to a bit error rate of 10 .

C. Wavelet Decompositions

The previous section described subband coding algo-
rithms that utilize banks of fixed resolution bandpass QMF
or polyphase FIR filters. This section describes a different
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Fig. 26. Filter bank interpretation of the DWT.

Fig. 27. Subband decomposition associated with a discrete wavelet transform.

class of subband coders that rely instead upon a filter bank
interpretation of the DWT. DWT based subband coders
offer increased flexibility over the subband coders described
previously since identical filter bank magnitude frequency
responses can be obtained for many different choices of
a wavelet basis, or equivalently, choices of filter coeffi-
cients. This flexibility presents an opportunity for basis
optimization. For each segment of audio, one can adaptively
choose a wavelet basis that minimizes the rate for some
target distortion. A detailed discussion of specific technical
conditions associated with the various wavelet families is
beyond the scope of this paper, and this section therefore
avoids mathematical development and concentrates instead
upon high-level coder architectures. In-depth treatment of
wavelets is available from many sources, for example, [137].
Under certain assumptions, the DWT acts as an orthonormal
linear transform . For a compact (finite)
support wavelet of length , the associated transformation
matrix is fully determined by a set of coefficients for

. As shown in Fig. 26, this transformation
matrix has an associated filter bank interpretation. One ap-
plication of the transform matrix to an 1 signal vector

generates an 1 vector of wavelet-domain transform
coefficients . The 1 vector can be separated into two

2 1 vectors of approximation and detail coefficients
and , respectively. The spectral content of the signal

captured in and corresponds to the frequency
subbands realized in 2 : 1 decimated output sequences from
a QMF bank.

Therefore, recursive DWT applications effectively pass
input data through a tree-structured cascade of low-pass
and high-pass filters followed by 2 : 1 decimation at every
node. The forward/inverse transform matrices of a particular
wavelet are associated with a corresponding QMF anal-
ysis/synthesis filter bank. The usual wavelet decomposition
implements an octave-band filter bank structure shown
in Fig. 27. In the figure, frequency subbands associated
with the coefficients from each stage are schematically
represented for an audio signal sampled at 44.1 kHz.

Wavelet packet (WP) or DWPT representations, on the
other hand, decompose both the detail and approximation
coefficients at each stage of the tree, as shown in Fig. 28.
In the figure, frequency subbands associated with the coef-
ficients from each stage are schematically represented for a
44.1-kHz sample rate. A filter bank interpretation of wavelet
transforms is attractive in the context of audio coding
algorithms. Wavelet or wavelet packet decompositions
can be tree structured as necessary (unbalanced trees are
possible) to decompose input audio into a set of frequency
subbands tailored to some application. It is possible, for
example, to approximate the critical band auditory filter
bank utilizing a wavelet packet approach. Moreover, many

-coefficient finite support wavelets are associated with a
single magnitude frequency response QMF pair; therefore,
a specific subband decomposition can be realized while
retaining the freedom to choose a wavelet basis that is in
some sense “optimal.” The basic idea behind DWT and
DWPT-based subband coders is to quantize and encode
efficiently the coefficient sequences associated with each
stage of the wavelet decomposition tree using the same noise
shaping techniques as the previously described perceptual
subband coders. The next few subsections concentrate upon
WP-based subband coders developed in the early 1990’s by
Sinhaet al. [157], [158], [160], as well as more recently
proposed hybrid sinusoidal/WPT algorithms developed by
Hamdy and Tewfik [187], Boland and Deriche [138], and
Penaet al. [139]–[142]. Other studies of DWT-based audio
coding schemes concerned with low-complexity, low-delay,
combined wavelet/multipulse LPC coding and combined
scalar/vector quantization of transform coefficients were
reported, respectively, by Black and Zeytinoglu [143],
Kudumakis and Sandler [144]–[146], and Boland and
Deriche [147], [148]. Several bit-rate scalable DWPT-based
schemes have also been investigated recently. For example,
a fixed-tree DWPT coding scheme capable of nearly trans-
parent quality with scalable bit rates below 100 kb/s was
proposed by Dobsonet al.and implemented in real time on a
75-MHz Pentium-class platform [149]. Additionally, Lu and
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Fig. 28. Subband decomposition associated with discrete wavelet packet transform (DWPT or WP).
Note that other, nonuniform decomposition trees are also possible.

Pearlman investigated a rate-scalable DWPT-based coder
that applies set partitioning in hierarchical trees (SPIHT) to
generate an embedded bitstream. Nearly transparent quality
was reported at bit rates between 55–66 kb/s [150].

D. Adapted Wavelet Packet Decompositions

The “best basis” methodologies [151], [152] for adapting
the WP tree structure to signal properties are typically
formulated in terms of Shannon entropy [153] and other
perceptually blind statistical measures. For a given WP
tree, related research directed towardoptimal filter selection
[154]–[156] has also emphasized optimization of statistical
rather than perceptual properties. The questions of per-
ceptually motivated filter selection and tree construction
are central to successful application of WP analysis in
audio coding algorithms. We consider in this section some
relevant research and algorithm developments. The WP tree
structure determines the time and frequency resolution of
the transform and therefore also creates a particular tiling
of the time-frequency plane. Several WP audio algorithms
[149], [158] have successfully employed time-invariant
WP tree structures that mimic the ear’s critical band fre-
quency resolution properties. In some cases, however, a
more efficient perceptual bit allocation is possible with a
signal-specific time-frequency tiling that tracks the shape
of the time-varying masking threshold. Some examples are
described next.

1) DWPT Coder with Globally Adapted Daubechies Anal-
ysis Wavelet:Sinha and Tewfik developed a variable-rate
wavelet-based coding scheme for which they reported nearly
transparent coding of CD-quality audio at 48–64 kb/s [157],
[158]. The encoder (Fig. 29) exploits redundancy using a
VQ scheme and irrelevancy using a WP signal decomposi-
tion combined with perceptual masking thresholds. The al-
gorithm works as follows. Input audio is segmented into
1 vectors, which are then windowed using a 1/16th overlap
square-root Hann window. The dynamic dictionary (DD),
which is essentially an adaptive VQ subsystem, then elim-
inates signal redundancy. A dictionary of 1 codewords
is searched for the vector perceptually closest to the input

Fig. 29. Dynamic dictionary/optimal wavelet packet encoder (after
[157]).

vector. An optimized WP decomposition is applied to the
original signal as well as the DD residual. The decomposition
tree is structured such that its 29 frequency subbands roughly
correspond to the critical bands of the auditory filter bank. A
masking threshold, obtained as in [134], is assumed constant
within each subband and then used to compute a perceptual
bit allocation. The encoder transmits the particular combina-
tion of DD and WP information that minimizes the bit rate
while maintaining perceptual quality.

This algorithm is unique in that it contains the first re-
ported application of adapted WP analysis to perceptual sub-
band coding of high-fidelity, CD-quality audio. During each
analysis frame, the WP basis selection procedure applies an
optimality criterion of minimum bit rate for a given distortion
level. The adaptation is “global” in the sense that the same
analysis wavelet is applied to the entire decomposition. The
authors reached several useful conclusions regarding the op-
timal compact support ( -coefficient) wavelet basis when
selecting from among the Daubechies orthogonal wavelet
bases [159, Proposition 4.5, p. 977]. First, optimization pro-
duced average bit-rate savings dependent on filter length of
up to 15%. Second, it is not necessary to search exhaustively
the space of all wavelets for a particular value of. The
search can be constrained to wavelets with2 vanishing
moments with minimal impact on bit rate. Third, larger,
i.e., more taps, and deeper decomposition trees, tended to
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yield better results. As far as quality is concerned, subjective
tests showed that the algorithm produced transparent quality
for certain test material including drums, pop, violin with
orchestra, and clarinet. Subjects detected differences, how-
ever, for the castanets and piano sequences. These difficulties
arise, respectively, because of inadequate pre-echo control,
and inefficient modeling of steady sinusoids. Tewfik and Ali
later enhanced the WP coder to improve pre-echo control and
increase coding efficiency. After elimination of the dynamic
dictionary, they reported improved quality in the range of
55–63 kb/s, as well as a real-time implementation of on two
TMS320C31 devices [160]. Other improvements included
exploitation of auditory temporal masking for pre-echo con-
trol, more efficient quantization and encoding of scale fac-
tors, and run-length coding of long zero sequences.

2) Scalable DWPT Coder with Adaptive Tree Struc-
ture: Srinivasan and Jamieson proposed a WP-based audio
coding scheme [161], [162] in which a signal-specific
perceptual best basis is constructed by adapting the WP
tree structure on each frame such that perceptual entropy
and, ultimately, the bit rate are minimized. While the tree
structure is signal adaptive, the analysis filters are time
invariant and obtained from the family of spline-based
biorthogonal wavelets [137]. The algorithm (Fig. 30) is
also unique in the sense that it incorporates mechanisms
for both bit-rate and complexity scaling. Before the tree
adaptation process can commence for a given frame, a
set of 63 masking thresholds corresponding to a set of
threshold frequency partitions roughly 1/3 Bark wide is
obtained from the ISO/IEC MPEG-1 psychoacoustic model
recommendation 2 [17]. Of course, depending upon the WP
tree, the subbands may or may not align with the threshold
partitions. For any particular WP tree, the associated bit
rate (cost) is computed by extracting the minimum masking
thresholds from each subband and then allocating sufficient
bits to guarantee that the quantization noise in each band
does not exceed the minimum threshold. The objective
of the tree adaptation process, therefore, is to construct a
minimum cost subband decomposition by maximizing the
minimum masking threshold in every subband. In [161], a
complexity-constrained tree adaptation procedure is shown
to yield a basis requiring the fewest bits for perceptually
transparent coding for a given complexity and temporal
resolution. Shapiro’s zerotree algorithm [163] is iteratively
applied to quantize the coefficients and exploit remaining
temporal correlations until the perceptual rate-distortion
criteria are satisfied. For informal listening tests over coded
program material that included violin, violin/viola, flute,
sitar, vocals/orchestra, and sax, the coded outputs at rates in
the vicinity of 45 kb/s were reported to be indistinguishable
from the originals with the exceptions of the flute and sax.
Software is available from the authors’ Web site [161]. We
note that other researchers have also reported recently on
similar strategies for signal-adaptive WP analysis of audio.
For example, perceptual metrics for WP tree adaptation
were investigated in [164] and [165].

3) DWPT Coder with Globally Adapted General Analysis
Wavelet: Srinivasan and Jamieson [161] demonstrated

Fig. 30. Masking-threshold adapted WP audio coder [161].

the advantages of a masking threshold adapted WP tree
with a time-invariant analysis wavelet. On the other hand,
Sinha and Tewfik [158] used a time-invariant WP tree but a
globally adapted analysis wavelet to demonstrate that there
exists a signal-specific “best” wavelet basis in terms of
perceptual coding gain for a particular number of filter taps.
The basis optimization in [158], however, was restricted
to Daubechies’ wavelets. Recent research has attempted to
identify which wavelet properties portend an optimal basis,
as well as to consider basis optimization over a broader
class of wavelets. In an effort to identify the “best” filter,
Philippe et al. measured the impact on perceptual coding
gain of wavelet regularity, AR(1) coding gain, and filter
bank frequency selectivity [166], [167]. The study compared
performance among orthogonal Rioul [168], orthogonal
Onno [169], and the biorthogonal wavelets of [170] in a WP
coding scheme that had essentially the same time-invariant
critical band WP decomposition tree as [158]. Using filters
of lengths varying between 4–120 taps, minimum bit rates
required for transparent coding in accordance with the usual
perceptual subband bit allocations were measured for each
wavelet. For a given filter length, the results suggested that
neither regularity nor frequency selectivity mattered signifi-
cantly. On the other hand, the minimum bit rate required for
transparent coding was shown to decrease with increasing
analysis filter AR(1) coding gain, leading the authors to
conclude that AR(1) coding gain is a legitimate criterion for
WP filter selection in perceptual coding schemes.

4) DWPT Coder with Adaptive Tree Structure and Locally
Adapted Analysis Wavelet:Phillipe et al. [171] measured
the perceptual coding gain associated with optimization of
the WP analysis filters at every node in the tree, as well as
optimization of the tree structure. In one experiment, the
WP tree structure was fixed, and then optimal filters were
selected for each tree node (local adaptation) such that the
bit rate required for transparent coding was minimized.
Simulated annealing [172] was used to solve the discrete
optimization problem posed by a search space containing
300 filters of varying lengths from the Daubechies [137],
Onno [169], Smith–Barnwell [173], Rioul [168], and
Akansu–Caglar [174] families. The filters selected by
simulated annealing were used in another set of experiments
on tree structure optimization. For a fixed tree, the filter
adaptation experiments yielded several noteworthy results.
First, a nominal bit-rate reduction of 3% was realized for
Onno’s filters (66.5 kb/s) relative to Daubechies’ filters (68
kb/s). Second, simulated annealing over the search space of
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Fig. 31. Wavelet packet analysis filter bank optimized for minimum bit rate, used in MMPE
experiments.

300 filters yielded a nominal 1% bit-rate reduction (66 kb/s)
relative to the Onno-only case. Finally, longer filter bank
delay, i.e., longer analysis filters, yielded lower bit rates.
For low-delay applications, however, a seven-fold delay
reduction from 700 down to only 100 samples is realized at
the cost of only a 10% increase in bit rate. Additional results
were reported recently in [175].

5) DWPT Coder with Perceptually Optimized Synthesis
Wavelets: Recent research has shown that reconstruction
distortion can be minimized in the mean square sense
(MMSE) by relaxing PR constraints and tuning the synthesis
filters [176]–[182]. Naturally, mean square error minimiza-
tion is of limited value for subband audio coders. As a
result, Gosseet al. [183], [184] extended [181] to minimize
a mean perceptual error (MMPE) rather than MMSE. A
mean perceptual error (MPE) was evaluated at the PR filter
bank output in terms of a unique JND measure [185]. Then,
an MMPE filter tuning algorithm derived from [181] was
applied, and performance was evaluated in terms of a per-
ceptual objective measure [186]. Using the DWPT structure
shown in Fig. 31, the authors reported improvement over the
PR case, and concluded that further investigation is required
to better characterize the costs and benefits of MMPE tuning
in a time-varying scenario.

E. Hybrid Harmonic/Wavelet Decompositions

Although the WP coder improvements reported in [160]
addressed pre-echo control problems evident in [158], they
did not rectify the coder’s inadequate performance for har-
monic signals such as the piano test sequence. This is in part
because the low-order FIR analysis filters typically employed
in a WP decomposition are characterized by poor frequency
selectivity, and therefore wavelet bases tend not to provide
compact representations for strongly sinusoidal signals. On
the other hand, wavelet decompositions provide some con-
trol over time resolution properties, leading to efficient rep-

resentations of transient signals. These considerations have
inspired several researchers to investigate hybrid coders.

1) Hybrid Sinusoidal/Classical DWPT Coder:Hamdyet
al. developed a novel hybrid coder [187] designed to exploit
the efficiencies of both harmonic and wavelet signal repre-
sentations. For each analysis frame, the encoder (Fig. 32)
chooses a compact signal representation from combined si-
nusoidal and wavelet bases. This algorithm is based on the
notion that short-time audio signals can be decomposed into
tonal, transient, and noise components. It assumes that tonal
components are most compactly represented in terms of si-
nusoidal basis functions, while transient and noise compo-
nents are most efficiently represented in terms of wavelet
bases. The encoder works as follows. First, Thomson’s anal-
ysis model [188] is applied to extract sinusoidal parameters
for each input frame. Harmonic synthesis using the McAulay
and Quatieri reconstruction algorithm [189] for phase and
amplitude interpolation is next applied to obtain a residual
sequence. Then, the residual is decomposed into WP sub-
bands. The overall WP analysis tree approximates an audi-
tory filter bank. Edge-detection processing identifies and re-
moves transients in low-frequency subbands. Without tran-
sients, the residual WP coefficients at each scale become
largely decorrelated. In fact, the authors determined that the
sequences are well approximated by white Gaussian noise
(WGN) sources having exponential decay envelopes. As far
as quantization and encoding are concerned, sinusoidal fre-
quencies are quantized with sufficient precision to satisfy
just-noticeable-differences in frequency (JNDF). Sinusoidal
amplitudes are quantized and encoded in accordance with a
masked threshold estimate. Sinusoidal phases are uniformly
quantized on the interval . As for quantization and en-
coding of WP parameters, all coefficients below 11 kHz are
encoded as in [371]. Above 11 kHz, however, parametric rep-
resentations are utilized. Transients are represented in terms
of a binary edge mask, while noise components are repre-
sented in terms of means, variances, and decay constants. The
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Fig. 32. Hybrid sinusoidal/wavelet encoder (after [187]).

coder was reported to achieve nearly transparent coding over
of wide range of CD-quality source material at bit rates in
the vicinity of 44 kb/s [190].

2) Hybrid Sinusoidal/M-Band DWPT Coder:Boland
and Deriche [138] reported on an experimental sinu-
soidal-wavelet hybrid audio codec with high-level archi-
tecture very similar to [187] but with low-level differences
in the sinusoidal and wavelet analysis blocks. In particular,
for harmonic analysis the proposed algorithm replaces
Thomson’s method used in [187] with a combination of
total least squares linear prediction (TLS-LP) and Prony’s
method. Then, in the harmonic residual wavelet decom-
position block, the proposed method replaces the usual
DWT cascade of two-band QMF sections with a cascade of
four-band QMF sections. In the wavelet analysis section,
the harmonic residual is decomposed such that critical
bandwidths are roughly approximated using a three-level
cascade of four-band analysis filters (i.e., ten subbands)
designed according to the -band technique in [191]. After
subjective listening comparisons between the proposed
scheme at 60–70 kb/s and MPEG-1, Layer III at 64 kb/s
on 12 SQAM CD [192] source items, the authors reported
indistinguishable quality for “acoustic guitar,” “Eddie
Rabbit,” “castanets,” and “female speech.”

3) Hybrid Sinusoidal/DWPT Coder with Tree Structure
Adaptation (ARCO):Penaet al. [139] have reported on
the “Adaptive Resolution Codec” (ARCO). This algorithm
employs a two-stage hybrid tonal-WP analysis section
architecturally similar to both [187] and [138]. ARCO intro-
duced several novelties in the segmentation, psychoacoustic
analysis, and WP analysis blocks. In an effort to match the
time-frequency analysis resolution to the signal properties,
ARCO includes a subframing scheme that makes use of both
time and frequency block clustering to determine optimal
analysis frame lengths [193]. The ARCO psychoacoustic
model resembles ISO/IEC MPEG-1 model recommenda-
tion 1 [17], with some enhancements. Tonality labeling
is based on [194], and noise maskers are segregated into
narrow-band and wide-band subclasses. Wide-band noise
maskers have frequency-dependent excitation patterns. The
ARCO WP decomposition procedure optimizes both the

tree structure, as in [161], and filter selections, as in [158]
and [171]. ARCO essentially arranges the subbands such
that the corresponding set of idealized brickwall rectangular
filters having amplitude equal to the height of the minimum
masking threshold in the each band matches as closely
as possible the shape of the masking threshold. Bits are
allocated in each subband to satisfy the minimum masking
threshold . The ARCO bit allocation strategy [195]
achieves fast convergence to a desired bit rate by shifting the
masking threshold up or down. Another unique property of
ARCO is its set of high-level “cognitive rules” that seek to
minimize the objectionable distortion when insufficient bits
are available to guarantee transparent coding [196]. Finally,
it is interesting to note that researchers developing ARCO
recently replaced the hybrid sinusoidal-WP analysis filter
bank with a novel multiresolution MDCT-based filter bank.
In [197], Casalet al. developed a “Multi-Transform” (MT)
that retains the lapped properties of the MDCT but creates a
nonuniform time-frequency tiling by transforming back into
time the high-frequency MDCT components in L-sample
blocks. The proposed MT is characterized by high resolution
in frequency in the low subbands and high resolution in time
at the high frequencies.

F. Signal-Adaptive, Nonuniform Filter Bank (NUFB)
Decompositions

The most popular method for realizing nonuniform
frequency subbands is to cascade uniform filters in an unbal-
anced tree structure, as with, for example, the DWPT. For a
given impulse response length, however, cascade structures
in general produce poor channel isolation. Recent advances
in modulated filter bank design methodologies (e.g., [198])
have made tractable direct form near perfect reconstruction
nonuniform designs, which are critically sampled. We
next consider subband coders that employ signal-adaptive
nonuniform modulated filter banks to approximate the
time-frequency analysis properties of the auditory system
more effectively than the other subband coders. Beyond the
algorithms addressed below, we note that other investigators
have proposed nonuniform filter bank coding techniques,
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which address redundancy reduction utilizing lattice [199]
and bidimensional VQ schemes [200].

1) Switched Nonuniform Filter Bank Cascade:Princen
and Johnston developed a CD-quality coder based upon a
signal-adaptive filter bank [201] for which they reported
quality better than the sophisticated MPEG-1 Layer III
algorithm at both 48 and 64 kb/s. The analysis filter bank
for this coder consists of a two-stage cascade. The first stage
is a 48-band nonuniform modulated filter bank split into
four uniform-bandwidth sections. There are eight uniform
subbands from 0 to 750 Hz, four uniform subbands from
750 to 1500 Hz, 12 uniform subbands from 1.5 to 6 kHz, and
24 uniform subbands from 6 to 24 kHz. The second stage
in the cascade optionally decomposes nonuniform bank
outputs with on/off switchable banks of finer resolution
uniform subbands. During filter bank adaptation, a suitable
overall time-frequency resolution is attained by selectively
enabling or disabling the second-stage filters for each of the
four uniform bandwidth sections. Uniform PCM is applied
to subband samples under the constraint of perceptually
masked quantization noise.

2) FV-MLT: Purat and Noll [370] also developed a
CD-quality audio coding scheme based on a signal-adaptive,
nonuniform, tree-structured wavelet packet decomposition.
This coder is unique in two ways. First of all, it makes use
of a novel wavelet packet decomposition [202]. Second, the
algorithm adapts to the signal the wavelet packet tree de-
composition depth and breadth (branching structure) based
on a minimum bit-rate criterion, subject to the constraint
of inaudible distortions. In informal subjective tests, the
algorithm achieved excellent quality at a bit rate of 55 kb/s.

G. IIR Filter Banks

Although the majority of subband and wavelet audio
coding algorithms found in the literature employ banks of
perfect reconstruction FIR filters, this does not preclude
the possibility of using infinite impulse response (IIR)
filter banks for the same purpose. Compared to FIR filters,
IIR filters are able to achieve similar magnitude response
characteristics with reduced filter orders, and hence with
reduced complexity. In the multiband case, IIR filter banks
also offer complexity advantages over FIR filter banks.
Enhanced performance, however, comes at the expense of
an increased construction and implementation effort for
IIR filter banks. Creusere and Mitra constructed a template
subband audio coding system modeled after [366] to com-
pare performance and to study the tradeoffs involved when
choosing between FIR and IIR filter banks for the audio
coding application [203]. In the study, two IIR and two FIR
coding schemes were constructed from the template using a
structured all-pass filter bank, a parallel allpass filter bank, a
tree-structured QMF bank, and a polyphase quadrature filter
bank.

VI. SINUSOIDAL CODERS

Although sinusoidal signal models have been applied
successfully in speech coding [204], [205], [189], [212]

and music synthesis applications [214], there was until
recently relatively little work reported on perceptual audio
coding using sinusoidal signal models. The existing sinu-
soidal coders were developed in a speech coding context,
and tended to minimize MSE. Perceptual properties were
introduced later [139], [206], [207], [211]. This section
is concerned with perceptual coding algorithms based on
purely sinusoidal or hybrid sinusoidal signal models. The
advent of MPEG-4 standardization established new research
goals for high-quality coding of general audio signals at bit
rates in the range of 6–24 kb/s, rates that had previously
been reserved for speech-specific coding algorithms. The
problem addressed in the MPEG-4 research was to achieve
low rates while eliminating the source-system paradigm
that characterizes most speech coders. In experiments
reported as part of the MPEG-4 standardization effort, it was
determined that sinusoidal coding is capable of achieving
good quality at low rates without being constrained by
a restrictive source model. Furthermore, unlike CELP
and other classical low-rate speech coding models, the
parametric sinusoidal coding is amenable in a straightfor-
ward manner to pitch and time-scale modification at the
decoder. This section describes sinusoidal algorithms re-
cently proposed for low-rate audio coding using perceptual
properties, including the Analysis/Synthesis Audio Codec
(ASAC), enhanced ASAC, and FM ASAC. Some of these
methodologies have been adopted as a part of the MPEG-4
standardization (Section VIII). Additionally, outside of the
MPEG-4 standardization framework, the recent emergence
of Internet-based streaming audio has motivated consider-
able research on the application of sinusoidal signal models
to high-quality audio coding at low bit rates. For example,
Levine and Smith developed a hybrid sinusoidal-filter bank
coding scheme that achieves very high quality at rates in the
vicinity of 32 kb/s [206], [208], [209].

A. Analysis/Synthesis Audio Codec

The sinusoidal ASAC for robust coding of general audio
signals at rates between 6 and 24 kb/s was developed by
Edler et al. at the University of Hannover and proposed
for MPEG-4 standardization [210] in 1995. An enhanced
ASAC proposal later appeared in [211]. Initially, ASAC
segments input audio into analysis frames over which the
signal is assumed to be nearly stationary. Sinusoidal syn-
thesis parameters are then extracted according to perceptual
criteria, quantized, encoded, and transmitted to the decoder
for synthesis. The algorithm distributes synthesis parameters
across basic and enhanced bitstreams to allow scalable
output quality at bit rates of 6 and 24 kb/s. Architecturally,
the ASAC scheme (Fig. 33) consists of a preanalysis block
for window selection and envelope extraction, a sinusoidal
analysis-by-synthesis parameter estimation block, a percep-
tual model, and a quantization and coding block. Although
it bears similarities to sinusoidal speech coding [189],
[212], [213] and music synthesis [214] algorithms that
have been available for some time, the ASAC coder also
incorporates some new techniques. In particular, whereas
previous sinusoidal coders emphasized waveform matching
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Fig. 33. ASAC encoder (after [216]).

by minimizing reconstruction error norms such as the mean
square error, ASAC disregards classical error minimization
criteria and instead selects sinusoids in decreasing order
of perceptual importance by means of an iterative anal-
ysis-by-synthesis loop. The perceptual significance of each
component sinusoid is judged with respect to the masking
power of the synthesis signal, which is determined by a
simplified version of the psychoacoustic model [215]. The
iterative analysis-by-synthesis block [216] estimates one
at a time the parameters of theth individual constituent
sinusoid or partial, and every iteration identifies the most
perceptually significant sinusoid remaining in the synthesis
residual, , and adds it to the synthetic
output, . Perceptual significance is assessed by com-
paring the synthesis residual against the masked threshold
associated with the current synthetic output and choosing
the residual sinusoid with the largest suprathreshold margin.
The loop repeats until the bit budget is exhausted. When
compared to standard speech codecs at similar bit rates, the
first version of ASAC [210] reportedly offered improved
quality for nonharmonic tonal signals such as spectrally
complex music, similar quality for single instruments, and
impaired quality for clean speech [217]. The later ASAC
[211] was improved for certain signals [218].

B. Harmonic and Individual Lines Plus Noise Coder

The ASAC algorithm outperformed speech-specific algo-
rithms at the same bit rate in subjective tests for some test
signals, particularly spectrally complex music characterized
by large numbers of nonharmonically related sinusoids. The
original ASAC, however, failed to match speech codec per-
formance for other test signals such as clean speech. As a
result, the ASAC core was embedded in an enhanced al-
gorithm [219] intended to better match the coder’s signal
model with diverse input signal characteristics. In research
proposed as part of an MPEG-4 “core experiment” [220],
Purnhagenet al. at the University of Hannover developed
in conjunction with Deutsche Telekom Berkom an “object-
based” algorithm. In this approach, harmonic sinusoid, indi-
vidual sinusoid, and colored noise objects could be combined
in a hybrid source model to create a parametric signal repre-
sentation. The enhanced algorithm, known as the “Harmonic

Fig. 34. HILN encoder (after [219]).

and Individual Lines Plus Noise” (HILN), is architecturally
very similar to the original ASAC, with some modifications
(Fig. 34). The iterative analysis–synthesis block is extended
to include a cascade of analysis stages for each of the avail-
able object types. In the enhanced analysis–synthesis system,
harmonic analysis is applied first, followed by individual
spectral line analysis, followed by shaped noise modeling
of the two-stage residual. Results from subjective listening
tests at 6 kb/s showed significant improvements for HILN
over ASAC, particularly for the most critical test items that
had previously generated the most objectionable ASAC arti-
facts [221]. Compared to HILN, CELP speech codecs are still
able to represent more efficiently clean speech at low rates,
and “time-frequency” codecs are able to encode more effi-
ciently general audio at rates above 32 kb/s. Nevertheless, the
HILN improvements relative to ASAC inspired the MPEG-4
committee to incorporate HILN into the MPEG-4 committee
draft as the recommended low-rate parametric audio coder
[222]. The HILN algorithm was recently deployed in a scal-
able low-rate Internet streaming audio scheme [223].

C. FM Synthesis

The HILN algorithm seeks to optimize coding efficiency
by making combined use of three distinct source models.
Although the HILN harmonic sinusoid object has been
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shown to facilitate increased coding gain for certain signals,
it is possible that other object types may offer opportunities
for greater efficiency when representing spectrally complex
harmonic signals. This notion motivated a recent investiga-
tion into the use of frequency modulation (FM) synthesis
techniques [224] in low-rate sinusoidal audio coding for
harmonically structured single instrument sounds [225].
FM synthesis offers advantages over other harmonic coding
methods (e.g., [216], [226]) because of its ability to model
with relatively few parameters harmonic signals that have
many partials. In the simplest FM synthesis, for example, the
frequency of a sine wave (carrier) is modulated by another
sine wave (modulator) to generate a complex waveform with
spectral characteristics that depend on a modulation index
and the parameters of the two sine waves. In continuous
time, the FM signal is given by

(49)

where
amplitude;
carrier frequency;
modulation frequency;
modulation index;
time index.

The associated Fourier series representation is

(50)

where is the Bessel function of the first kind. It can
be seen from (50) that a large number of harmonic partials
can be generated (Fig. 35) by controlling only three param-
eters per FM “operator.” One can observe that the funda-
mental and harmonic frequencies are determined byand

, and that the harmonic partial amplitudes are controlled
by the modulation index. The Bessel envelope, moreover,
essentially determines the FM spectral bandwidth. Example
harmonic FM spectra for a unit amplitude 200-Hz carrier are
given in Fig. 35 for modulation indexes of one [Fig. 35(a)]
and 15 [Fig. 35(b)]. While both examples have identical har-
monic structure, the amplitude envelopes and bandwidths
differ markedly as a function of the index. Clearly, the cen-
tral issue in making effective use of the FM technique for
signal modeling is parameter estimation accuracy.

Winduratna proposed an FM synthesis audio coding
scheme in which the outputs of parallel FM “operators”
are combined to model a single instrument sound. The
algorithm (Fig. 36) works as follows. First, the preanalysis
block segments input audio into analysis frames and then
extracts parameters for a set of individual spectral lines, as
in [216]. Next, the preanalysis identifies a harmonic struc-
ture by maximizing an objective function [225]. Given a
fundamental frequency estimate from the preanalysis, the
iterative parameter extraction loop estimates the parameters
of individual FM operators and accumulates their contri-
butions until the composite spectrum closely resembles the
original. Perceptual closeness is judged to be adequate when
the absolute original minus synthetic harmonic difference

(a)

(b)

Fig. 35. Harmonic FM spectra,f = f = 200 Hz, with (a)
I = 1 and (b)I = 15.

Fig. 36. FM synthesis coding scheme (after [225]).

spectrum is below the masked threshold [215]. During
each loop iteration, error minimizing values for the current
operator are determined by means of an exhaustive search.
The loop repeats and additional operators are synthesized
until the error spectrum is below the masked threshold. The
FM coding scheme was shown to efficiently represent single
instrument sounds at bit rates between 2.1–4.8 kb/s. Using
a 24-ms analysis window, for example, one critical male
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speech item was encoded at 21.2 kb/s using FM synthesis
compared to 45 kb/s for ASAC [225], with similar output
quality. Despite estimation difficulties for signals with more
than one fundamental, e.g., polyphonic music, the high
efficiency of the FM synthesis technique makes it a likely
candidate for future inclusion in object-based algorithms
such as HILN.

D. Hybrid Sinusoidal Coders

Whereas the waveform-preserving perceptual transform
(Section IV) and subband (Section IV) coders tend to target
transparent quality at bit rates between 32–128 kb/s per
channel, the sinusoidal coders proposed thus far in the
literature have concentrated on very low-rate applications
between 2–16 kb/s. Rather than transparent quality, these
algorithms have emphasized source robustness, i.e., the
ability to deal with general audio at low rates without
constraining source model dependence. The current low-rate
sinusoidal algorithms (ASAC, HILN, etc.) represent the
perceptually significant portions of the magnitude spectrum
from the original signal without explicitly treating the phase
spectrum. As a result, perceptually transparent coding is
typically not achieved with these algorithms. It is generally
agreed that different state-of-the-art coding techniques
perform most efficiently in terms of output quality achieved
for a given bit rate. In particular, CELP speech algorithms
offer the best performance for clean speech below 16 kpbs,
parametric sinusoidal techniques perform best for general
audio between 16–32 kb/s, and so-called time-frequency
audio codecs tend to offer the best performance at rates
above 32 kb/s. Designers of comprehensive bit-rate scal-
able coding systems, therefore, must decide whether to
cascade multiple stages of fundamentally different coder
architectures with each stage operating on residual signal
from the previous stage, or alternatively to “simulcast”
independent bitstreams from different coder architectures
and then select an appropriate decoder at the receiver. In
fact, some experimental work performed in the context of
MPEG-4 standardization demonstrated that a cascaded,
hybrid sinusoidal/time-frequency coder can not only meet
but in some cases even exceed the output quality achieved
by the time-frequency (transform) coder alone at the same
bit rate for certain critical test signals [227]. Issues critical
to cascading successfully a parametric sinusoidal coder with
a transform-based time-frequency coder are addressed in
[228]. It was earlier noted that CELP speech algorithms
typically outperform the parametric sinusoidal coders for
clean speech inputs at rates below 16 kb/s. There is some
uncertainty, however, as to which class of algorithm is best
suited when both speech and music are present. A hybrid
scheme (Fig. 37) intended to outperform CELP/parametric
“simulcast” for speech/music mixtures was proposed in
[228]. As expected, the hybrid structure was reported to
outperform simulcast configurations only when the voice
signal was dominant [228]. Quality degradations were
reported for mixtures containing dominant musical signals.
In the future, hybrid structures of this type will benefit from
emerging techniques in speech/music discrimination (e.g.,

Fig. 37. Hybrid sinusoidal/vocoder (after [228]).

[229], [230]). As observed by Edler, on the other hand,
future audio coding research is also quite likely to focus on
automatic decomposition of complex input signals into com-
ponents for which individual coding is more efficient than
direct coding of the mixture [231] using hybrid structures.
Advances in sound separation and auditory scene analysis
[232], [233] techniques will eventually make the automated
decomposition process viable.

VII. L INEAR-PREDICTION-BASED CODERS

Although other methodologies have been the focus
of attention in perceptual audio coding research, a few
CD-quality coders based on a source-system model and
linear prediction have also been reported to achieve trans-
parent or near transparent quality with bit rates ranging
between 64–128 kb/s. With the exception of TwinVQ [128],
however, the LP audio codecs have primarily remained
within the experimental domain. In light of the recent trend
toward hybrid speech and audio coding at rates below 16
kb/s, it is useful to consider existing LP techniques in audio
coding. It was observed in formal listening tests during
MPEG-4 standardization, for example, that at certain low
rates, the best choice of signal model depends upon the
source material. In particular, a CELP coder outperforms
a sinusoidal coder for speech, but the sinusoidal coder
outperforms the CELP coder for music. It is conceivable
that a more efficient future hybrid algorithm will capitalize
on the strengths of both signal models in a single coder.
The benefits of perceptual LP codecs in this scenario as
yet have been largely unexplored. In spite of the fact that
the LP analysis–synthesis framework is central to modern
speech coding algorithms [234], it has received relatively
little attention in the audio coding literature or standards.
One reason is that the LP coders are not well suited to
the task of modeling the nearly sinusoidal components
present in steady-state audio signals. These elements create
sharp peaks in the spectral envelope, which often in the
presence of quantization noise lead to LP synthesis filter
instabilities. Another reason for the lack of interest is that
the source-system represented by the LP analysis–syn-
thesis framework does not necessarily model any of the
physical mechanisms that generate audio signals. The
correspondence between the LP analysis–synthesis and the
source-system speech production model has been a primary
reason for its success in speech applications. Whether
or not LP analysis–synthesis is well suited to modeling
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Fig. 38. Multipulse excitation model used in [235].

audio is highly signal-dependent. Nevertheless, several LP
algorithms have been successfully applied to CD-quality
audio. This section considers some examples of LP-based
audio codecs. In addition, the section examines a novel
coder based on frequency-warped LP that has potential for
reduced complexity by eliminating the explicit perceptual
model.

A. Multipulse Excitation

Singhal at Bell Labs [235] reported that analysis-by-syn-
thesis multipulse excitation of sufficient pulse density can
be applied to correct for LP envelope errors introduced by
bandwidth expansion and quantization (Fig. 38). This algo-
rithm uses a twenty-fourth-order LPC synthesis filter while
optimizing pulse positions and amplitudes to minimize per-
ceptually weighted reconstruction errors. Singhal determined
that densities of approximately one pulse per four output
samples of each excitation subframe are required to achieve
near transparent quality. Spectral coefficients are transformed
to inverse sine reflection coefficients, then differentially en-
coded and quantized using pdf-optimized Max quantizers.
Entropy (Huffman) codes are also used. Pulse locations are
differentially encoded relative to the location of the first pulse.
Pulseamplitudesarefractionallyencodedrelativetothelargest
pulseand then quantized using a Maxquantizer. Theproposed
MPLPC audio coder achieved output SNR’s of 35–40 dB at
a bit rate of 128 kb/s. Other MPLPC audio coders have also
been proposed [236], including a scheme based on MPLPC in
conjunctionwiththediscretewavelet transform[147].
B. Discrete Wavelet Excitation Coding

While the most successful speech codecs nowadays use
some form of closed-loop time-domain analysis-by-syn-
thesis such as MPLPC, high-performance LP-based
perceptual audio coding has been realized with alternative
frequency-domain excitation models. For instance, Boland
and Deriche reported output quality comparable to MPEG-1,
Layer II at 128 kb/s for an LPC audio coder operating at 96
kb/s [237] in which the prediction residual was transform
coded using a three-level DWT based on a four-band uniform
filter bank. At each level of the DWT, the lowest subband
of the previous level was decomposed into four uniform
bands. This ten-band nonuniform structure was intended to
mimic critical bandwidths to a certain extent. A perceptual
bit allocation according to MPEG-1, psychoacoustic model
2 was applied to the transform coefficients.

C. Sinusoidal Excitation Coding

Still other frequency-domain excitation models are pos-
sible. Excitation sequences modeled as a sum of sinu-
soids were investigated [238] in order to capitalize on
the experimentally observed tendency of the prediction
residuals for high-fidelity audio to be spectrally impulsive
rather than flat. In coding experiments using 32-kHz-sam-
pled input audio, subjective and objective quality improve-
ments relative to the MPLPC coders were reported for
the sinusoidal excitation schemes, with high-quality output
audio reported at 72 kb/s. In the experiments [239], a
set of tenth-order LP coefficients is estimated on 9.4-ms
analysis frames and split-vector quantized using 24 bits.
Then, the prediction residual is analyzed and sinusoidal
parameters are estimated for the seven best out of a can-
didate set of 13 sinusoids for each of six subframes.
The masked threshold is estimated and used to form a
time-varying bit allocation for the amplitudes, frequencies,
and phases on each subframe. Given a frame allocation
of 675, a total of 573, 78, and 24 bits, respectively, are
allocated to the sinusoidal, bit allocation side informa-
tion, and LP coefficients. In conjunction with the usage
of a masking-threshold adapted weighting filter, the si-
nusoidal excitation scheme was also reported to deliver
improved quality relative to MPEG-1, Layer I at a bit
rate of 96 kb/s [238] for selected test material, including
piano, horn, and drum.

D. Frequency Warped LP

Beyond the performance improvements realized through
the use of different excitation models, there has been some
interest in warping the frequency axis prior to performing
LP analysis to effectively provide better resolution at some
frequencies than at others. In the context of perceptual
coding, it is naturally of interest to achieve a Bark-scale
warping. Frequency axis warping to achieve nonuniform
FFT resolution was first introduced by Oppenheimet al.
[240], [241] using a network of cascaded first-order all-pass
sections for frequency warping of the signal, followed by
a standard FFT. The idea was later extended to warped
linear prediction (WLP) by Strube [242], and was ultimately
applied in an ADPCM codec [243]. Cascaded First-order
all-pass sections were used to warp the signal, and then the
LP autocorrelation analysis was performed on the warped
autocorrelation sequence. In this scenario, a single-param-
eter warping of the frequency axis can be introduced into
the LP analysis by replacing the delay elements in the FIR
analysis filter with all-pass sections, i.e., by replacing the
complex variable with a filter of the form

(51)

Thus, the predicted sample value is not produced from a com-
bination of past samples, but rather from the samples of a
warped signal. In fact, it has been shown [244], [405] that
selecting the value of 0.723 for the parameterleads to a
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Fig. 39. ISO/IEC 11172-3 (MPEG-1) layer I/II encoder.

frequency warp that approximates well the Bark frequency
scale. A WLP-based audio codec [245] was recently pro-
posed. The inherent Bark frequency resolution of the WLP
prediction residual yields a perceptually shaped quantiza-
tion noise without the use of an explicit perceptual model or
time-varying bit allocation. In this system, a fortieth-order
WLP synthesis filter is combined with differential encoding
of the prediction residual. A fixed rate of 2 bits per sample
(88.2 kb/s) is allocated to the residual sequence, and 5 bits
per coefficient are allocated to the prediction coefficients on
an analysis frame of 800 samples, or 18 ms. This translates to
a bit rate of 99.2 kb/s per channel. In objective terms, an au-
ditory error measure showed considerable improvement for
the WLP coding error in comparison to a conventional LP
coding error when the same number of bits was allocated to
the prediction residuals. Subjectively, the algorithm was re-
ported to achieve transparent quality for some material, but
it also had difficulty with transients at the frame boundaries.
The algorithm was later extended to handle stereophonic sig-
nals [246] by forming a complex-valued representation of
the two channels and then using WLP for complex signals
(CWLP). Less than CD quality was reported at a rate of 128
kb/s for 44.1-kHz-sampled source material. It was suggested
that significant quality improvement could be realized for
the WLPC audio coder by improving the excitation model
to use a closed-loop analysis-by-synthesis procedure such as
CELP or a multipulse model [247]. One of the shortcomings
of the original WLP coder was inadequate attention to tem-
poral effects. As a result, further experiments were reported
[248] in which WLP was combined with TNS to realize ad-
ditional quality improvement for the complex-signal stereo-
phonic WLP audio coder. Future developments in LP-based
audio codecs will continue to appear, particularly in the con-
text of low-rate hybrid coders for both speech and audio.

VIII. A UDIO CODING STANDARDS

This section gives both high-level descriptions and
important details of several international and com-
mercial product audio coding standards, including the
ISO/IEC MPEG-1/-2/-4 series, the Dolby AC-2/AC-3, the
Sony ATRAC/MiniDisc/SDDS, the Lucent Technologies
PAC/EPAC/MPAC, and the Phillips DCC algorithms.

A. ISO/IEC 11172-3 (MPEG-1) and ISO/IEC IS13818-3
(MPEG-2 BC)

An International Standards Organization/Moving Pictures
Experts Group (ISO/MPEG) audio coding standard for
stereo CD-quality audio was adopted in 1992 after four
years of extensive collaborative research by audio coding
experts worldwide. ISO 11172-3 [249] comprises a flex-
ible hybrid coding technique, which incorporates several
methods including subband decomposition, filter bank
analysis, transform coding, entropy coding, dynamic bit
allocation, nonuniform quantization, adaptive segmentation,
and psychoacoustic analysis. MPEG coders accept 16-bit
PCM input data at sample rates of 32, 44.1, and 48 kHz.
MPEG-1 (1992) offers separate modes for mono, stereo,
dual independent mono, and joint stereo. Available bit
rates are 32–192 kb/s for mono and 64–384 kb/s for stereo.
MPEG-2 (1994) [250]–[252] extends the capabilities offered
by MPEG-1 to support the so called 3/2 channel format
with left, right, center, and left and right surround channels.
The first MPEG-2 standard was backward compatible with
MPEG-1 in the sense that 3/2 channel information trans-
mitted by an MPEG-2 encoder can be correctly decoded
for two-channel presentation by an MPEG-1 receiver. The
second MPEG-2 standard sacrificed backward MPEG-1
compatibility to eliminate quantization noise unmasking
artifacts [253] which are potentially introduced by the forced
backward compatibility. Several tutorials on the MPEG-1
[254]–[257] and MPEG-1/2 [30], [31], [75] standards have
appeared. MPEG standardization work is continuing, and
will eventually lead to very low rates for high fidelity,
perhaps reaching as low as 16 kb/s per channel.

The MPEG-1 architecture contains three layers of in-
creasing complexity, delay, and output quality. Each higher
layer incorporates functional blocks from the lower layers.
Layers I and II (Fig. 39) work as follows. The input signal
is first decomposed into 32 critically subsampled subbands
using a polyphase realization of a PQMF bank [78] (Sec-
tion III). The channels are equally spaced such that a 48-kHz
input signal is split into 750-Hz subbands, with the subbands
decimated 32 : 1. A 511th-order prototype filter was chosen
such that the inherent overall PQMF distortion remains
below the threshold of audibility. Moreover, the prototype
filter was designed for very high sidelobe attenuation (96
dB) to insure that intraband aliasing due to quantization
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Fig. 40. ISO/IEC 11172-3 (MPEG-1) layer III encoder.

noise remains negligible. For the purposes of psychoacoustic
analysis and determination of JND thresholds, a 512 (layer
I) or 1024 (layer II) point FFT is computed in parallel with
the subband decomposition for each decimated block of
12 input samples (8 ms at 48 kHz). Next, the subbands are
block companded (normalized by a scalefactor) such that the
maximum sample amplitude in each block is unity, then an
iterative bit allocation procedure applies the JND thresholds
to select an optimal quantizer from a predetermined set
for each subband. Quantizers are selected such that both
the masking and bit-rate requirements are simultaneously
satisfied. In each subband, scale factors are quantized using
6 bits and quantizer selections are encoded using 4 bits.

1) Layer I: For layer I encoding, decimated subband
sequences are quantized and transmitted to the receiver in
conjunction with side information, including quantized scale
factors and quantizer selections.

2) Layer II: Layer II improves three portions of Layer
I in order to realize enhanced output quality and reduce bit
rates at the expense of greater complexity and increased
delay. In particular, the perceptual model relies upon a
higher resolution FFT, the maximum subband quantizer
resolution is increased, and scale-factor side information is
reduced while exploiting temporal masking by considering
properties of three adjacent 12-sample blocks and optionally
transmitting one, two, or three scale factors. Average MOS’s
of 4.7 and 4.8 were reported [30] for monaural layer I and
layer II codecs operating at 192 and 128 kb/s, respectively.
Averages were computed over a range of test material.

3) Layer III: The layer III MPEG (Fig. 40) architecture
achieves performance improvements by adding several im-
portant mechanisms on top of the layer I/II foundation. A hy-
brid filter bank is introduced to increase frequency resolution
and thereby better approximate critical band behavior. The
hybrid filter bank includes adaptive segmentation to improve
pre-echo control. Sophisticated bit allocation and quantiza-
tion strategies that rely upon nonuniform quantization, anal-
ysis-by-synthesis, and entropy coding are introduced to allow
reduced bit rates and improved quality. The hybrid filter bank
is constructed by following each subband filter with an adap-
tive MDCT. This practice allows for higher frequency res-
olution and pre-echo control. Use of an 18-point MDCT,
for example, improves frequency resolution to 41.67 Hz per
spectral line. The adaptive MDCT switches between 6–18

points to allow improved pre-echo control. Shorter blocks (4
ms) provide for temporal premasking of pre-echoes during
transients; longer blocks during steady-state periods improve
coding gain, while also reducing side information and hence
bit rates. Bit allocation and quantization of the spectral lines
are realized in a nested loop procedure that uses both nonuni-
form quantization and Huffman coding. The inner loop ad-
justs the nonuniform quantizer step sizes for each block until
the number of bits required to encode the transform compo-
nents falls within the bit budget. The outer loop evaluates the
quality of the coded signal (analysis-by-synthesis) in terms
of quantization noise relative to the JND thresholds. Average
MOS of 3.1 and 3.7 were reported [30] for monaural layer II
and layer III codecs operating at 64 kb/s.

4) Applications: MPEG-1 has been successful in nu-
merous applications. For example, MPEG-1 Layer III has
become thede factostandard for transmission and storage
of compressed audio for both WWW and handheld media
applications (e.g., Diamond RIO). In these applications,
the “.MP3” label denotes MPEG-1, Layer III. Note that
MPEG-1 audio coding has steadily gained acceptance and
ultimately has been deployed in several other large scale
systems, including the European digital radio (DBA) or
Eureka [359], direct broadcast satellite [360], and digital
compact cassette [366]. Recently, moreover, the collabora-
tive European Advanced Communications Technologies and
Services (ACTS) program adopted MPEG audio and video
as the core compression technologies for the Advanced
Television at Low Bitrates And Networked Transmission
over Integrated Communication systems (ATLANTIC)
project, a system intended to provide functionality for
television program production and distribution [258], [259].
The ATLANTIC system has posed new challenges for
MPEG deployment such as seamless bitstream (source)
switching [260] and robust transcoding (tandem coding).
Unfortunately, transcoding is neither guaranteed nor likely
to preserve perceptual noise masking [261]. A buried data
“MOLE” signal was proposed to mitigate and in some cases
eliminate transcoding distortion for cascaded MPEG-1 layer
II codecs [262], ideally allowing downstream tandem stages
to preserve the original bitstream. The idea behind the
MOLE is to apply the same set of quantizers to the same set
of data in the downstream codecs as in the original codec.
The output bitstream will then be identical to the original
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Fig. 41. ISO/IEC IS13818-7 (MPEG-2 NBC/AAC) encoder (after [266]).

bitstream, provided that numerical precision in the analysis
filter banks does not bias the data [263].

We will next consider the more recent and in some
cases still-evolving MPEG standards for audio, namely, the
MPEG-2 AAC and the MPEG-4 algorithms. The discus-
sion will focus primarily upon architectural novelties and
differences from MPEG-1.

B. ISO/IEC IS13818-7 (MPEG-2 NBC/AAC)

The 11172-3 MPEG-1 and IS13818-3 MPEG-2 BC/LSF
algorithms standardized practical methods for high-quality
coding of monaural and stereophonic program material. By
the early 1990’s, however, demand for high-quality coding of
multichannel audio at reduced bit rates had increased signif-
icantly. Although the MPEG-1 and MPEG-2 BC/LSF algo-
rithms had exploited many of the audio coding research ad-
vances that had occurred since the late 1980’s, a few recent
tools still had not been adopted in the international standards.
Moreover, the backward compatibility constraints imposed
on the MPEG-2 BC/LSF algorithm made it impractical to
code five-channel program material at rates below 640 kb/s.
As a result, MPEG began standardization activities for a non-
backward compatible advanced coding system targeting “in-
distinguishable” quality [264] at a rate of 384 kb/s for five
full bandwidth channels. In less than three years, this effort
led to the adoption of the IS13818-7 MPEG-2 Non-back-
ward Compatible/Advanced Audio Coding (NBC/AAC) al-
gorithm [265], a system that exceeded design goals and pro-
duced the desired quality at only 320 kb/s for five full band-
width channels. While similar in many respects to its prede-
cessors, the AAC algorithm [75], [266], [267] achieves per-
formance improvements by incorporating coding tools pre-
viously not found in the standards such as filter bank window
shape adaptation, spectral coefficient prediction, temporal
noise shaping, and bandwidth- and bit-rate-scaleable oper-
ation. Improvements in bit rate and quality are also realized
through the use of a sophisticated noiseless coding scheme
integrated with a two-stage bit allocation procedure. More-
over, the AAC algorithm contains scalability and complexity

management tools not previously included with the MPEG
algorithms. As far as applications are concerned, the AAC al-
gorithm is currently embedded in the atob and LiquidAudio
players for streaming of high-fidelity stereophonic audio. It
is also a candidate for standardization in the United States
Digital Audio Radio (U.S. DAR) project. The remainder of
this section describes some of the features unique to MPEG-2
AAC.

The MPEG-2 AAC algorithm (Fig. 41) is organized
as a set of coding tools. Depending upon available CPU
or channel resources and desired quality, one can select
from among three complexity “profiles,” namely main, low
(LC), and scalable sample rate (SSR) profiles. Each profile
recommends a specific combination of tools. Our focus here
is on the complete set of tools available for main profile
coding, which works as follows.

1) Filter Bank: First, a high-resolution MDCT filter
bank obtains a spectral representation of the input. Like
previous MPEG coders, the AAC filter bank resolution
is signal adaptive. Stationary signals are analyzed with a
2048-point window, while transients are analyzed with a
block of eight 256-point windows to maintain time synchro-
nization for channels using different filter bank resolutions
during multichannel operations. The maximum frequency
resolution is therefore 23 Hz for a 48 kHz sample rate, and
the maximum time resolution is 2.6 ms. Unlike previous
MPEG coders, however, AAC eliminates the hybrid filter
bank and relies on the MDCT exclusively. The AAC filter
bank is also unique in its ability to switch between two
distinct MDCT analysis window shapes. Given particular
input signal characteristics, the idea behind window shape
adaptation is to optimize filter bank frequency selectivity in
the sense of localizing supramasking threshold signal energy
to the extent possible in the fewest spectral coefficients.
This strategy seeks essentially to maximize the perceptual
coding gain of the filter bank. While both satisfying the
perfect reconstruction and aliasing cancellation constraints
of the MDCT, the two windows offer different spectral
analysis properties. A sine window [(47)] is selected when
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narrow passband selectivity is more beneficial than strong
stopband attenuation, as in the case of inputs characterized
by a dense harmonic structure (less than 140-Hz spacing)
such as harpsichord or pitch pipe. On the other hand, a KBD
window is selected in cases for which stronger stopband
attenuation is required, or for situations in which strong
components are separated by more than 220 Hz. The KBD
window in AAC has its origins in the MDCT filter bank
window designed at Dolby Labs for the AC-3 algorithm
using explicitly perceptual criteria. Details of the minimum
masking template design procedure are given in [268] and
[269].

2) Spectral Prediction:The AAC algorithm realizes
improved coding efficiency relative to its predecessors by
applying prediction over time to the transform coefficients
below 16 kHz, as was done previously in [118], [270], and
[271].

3) Bit Allocation: The bit allocation and quantization
strategies in AAC bear some similarities to previous MPEG
coders in that they make use of a nested loop iterative
procedure, and in that psychoacoustic masking thresholds
are obtained from an analysis model similar to MPEG-1,
model recommendation number two. Both lossy and lossless
coding blocks are integrated into the rate-control loop struc-
ture so that redundancy removal and irrelevancy reduction
are simultaneously affected in a single analysis-by-synthesis
process. As in the case of MPEG-1, Layer III, the AAC
coefficients are grouped into 49 scale-factor bands that
mimic the auditory system’s frequency resolution. As with
MPEG-1 Layer III and Lucent Technologies PAC, a bit
reservoir is maintained to compensate for time-varying
perceptual bit-rate requirements.

4) Noiseless Coding:The noiseless coding block [272]
embedded in the rate-control loop has several innovative
features as well. Twelve Huffman codebooks are available
for two- and four-tuple blocks of quantized coefficients.
Sectioning and merging techniques are applied to maximize
redundancy reduction. Individual codebooks are applied
to time-varying “sections” of scale-factor bands, and the
sections are defined on each frame through a greedy merge
algorithm that minimizes the bitrate. Grouping across time
and intraframe frequency interleaving of coefficients prior
to codebook application are also applied to maximize zero
coefficient runs and further reduce bit rates.

5) Other Enhancements:The AAC has an embedded
TNS module for pre-echo control (Section III-E), a special
profile for SSR, and time-varying as well as frequency
subband selective application of MS and/or intensity stereo
coding for five-channel inputs [273].

6) Performance: Incorporation of the nonbackward
compatible coding enhancements proved to be a judicious
strategy for the AAC algorithm. In independent listening
tests conducted worldwide [274], the AAC algorithm met
the strict ITU-R BS.1116 criteria for “indistinguishable”
quality [275] at a rate of 320 kb/s for five full bandwidth
channels [276]. This level of quality was achieved with a
manageable decoder complexity. Two-channel real-time
AAC decoders were reported to run on 133-MHz Pentium

platforms using 40% and 25% of available CPU resources
for the main and low complexity profiles, respectively [277].
In the future, MPEG-2 AAC will maintain a presence as the
core “time-frequency” coder reference model for the new
MPEG-4 standard.

7) Reference Model Validation :Before proceeding with
a discussion of MPEG-4, we first consider a significant
system-level aspect of MPEG-2 AAC that also propagated
into MPEG-4. Both algorithms are structured in terms of
so-called reference models (RM’s). In the RM approach,
generic coder blocks or tools (e.g., perceptual model, filter
bank, rate-control loop, etc.) adhere to a set of defined
interfaces. The RM therefore facilitates the testing of in-
cremental single block improvements without disturbing
the existing macroscopic RM structure. For instance, one
could devise a new psychoacoustic analysis model that
satisfies the AAC RM interface and then simply replace
the existing RM perceptual model in the reference soft-
ware with the proposed model. It is then a straightforward
matter to construct performance comparisons between the
RM method and the proposed method in terms of quality,
complexity, bit rate, delay, or robustness. The RM defini-
tions are intended to expedite the process of evolutionary
coder improvements.

In fact, several practical AAC improvements have already
been analyzed within the RM framework. For example, in
[278] a new backward predictor is proposed as a replace-
ment for the existing backward adaptive LMS predictors, re-
sulting in a 38% computational savings. Forward adaptive
predictors have also been investigated [279]. In another ex-
ample of RM efficacy, improvements to the AAC noiseless
coding module were also reported in [280]. A modification
to the greedy merge sectioning algorithm was proposed in
which high-magnitude spectral peaks that tended to degrade
Huffman coding efficiency were coded separately. In yet an-
other example of RM innovation aimed at improving quality
for a given bit rate, product code VQ techniques [281] were
applied to increase AAC scale-factor coding efficiency [282].
This scheme realized significant quality improvements for
critical test items at low rates, because scale factors are decor-
related using a DCT and then grouped into subvectors for
quantization by a product code VQ [283].

8) Enhanced AAC in MPEG-4:The next section is
concerned with the multimodal MPEG-4 audio standard,
for which the MPEG-2 AAC RM core was selected as
the “time-frequency” audio coding RM, although some
improvements have already been realized. Recently, for
example, perceptual noise substitution (PNS) was included
[284] as part of the MPEG-4 AAC RM. The PNS exploits
the fact that a random noise process can be used to model
efficiently transform coefficients in noise-like frequency
subbands, provided the noise vector has an appropriate
temporal fine structure [122]. Bit-rate reduction is realized
since only a compact, parametric representation is required
for each PNS subband (i.e., noise energy) rather than
requiring full quantization and coding of subband transform
coefficients. At a bit rate of 32 kb/s, a mean improvement
due to PNS of 0.61 on the comparison mean opinion score
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Fig. 42. ISO/IEC MPEG-4 integrated tools for audio coding (after [288]).

(CMOS) test for critical test items such as speech, castanets,
and complex sound mixtures was reported in [284].

C. ISO/IEC 14 496-3 (MPEG-4)

Version one of the most recent MPEG audio standard,
ISO/IEC 14 496 or MPEG-4, was adopted in December 1998
after many proposed algorithms were tested [285], [286] for
compliance with the program objectives established by the
MPEG committee. MPEG-4 audio encompasses a great deal
more functionality than just perceptual coding [287]. It com-
prises an integrated family of algorithms with wide-ranging
provisions for scaleable, object-based speech and audio
coding at bit rates from as low as 200 b/s up to 64 kb/s per
channel. The distinguishing features of MPEG-4 relative
to its predecessors are extensive scalability, object-based
representations, user interactivity/object manipulation, and a
comprehensive set of coding tools available to accommodate
almost any desired tradeoff among bit rate, complexity, and
quality. Very low rates are achieved through the use of struc-
tured representations for synthetic speech and music, such
as text-to-speech and MIDI. For higher bit rates and “natural
audio” speech and music, the standard provides integrated
coding tools that make use of different signal models, the
choice of which is made depending upon desired bit rate,
bandwidth, complexity, and quality. Coding tools are also
specified in terms of MPEG-4 “profiles,” which essentially
recommend tool sets for a given level of functionality
and complexity. Beyond its provisions specific to coding
of speech and audio, MPEG-4 also specifies numerous
sophisticated system-level functions for media-independent
transport, efficient buffer management, syntactic bitstream
descriptions, and time-stamping for synchronization of
audiovisual information units. Although a discussion of
these features is not relevant to our focus on perceptual

coding, an excellent overview is given in [288]. Also note
that a perspective on future directions within MPEG audio
appeared in [289].

1) Natural Audio Coding Tools:MPEG-4 audio version
one [288] integrates a set of tools (Fig. 42) for coding of
natural sounds [290] at bit rates ranging from as low as
200 b/s up to 64 kb/s per channel. For speech and audio,
three distinct algorithms are integrated into the framework,
namely, two parametric coders for bitrates of 2–4 kb/s
and 8-kHz sample rate as well as 4–16 kb/s and 8- or
16-kHz sample rates (Section VI-B). For higher quality,
narrow-band (8-kHz sample rate) or wide-band (16 kHz)
speech is handled by a CELP speech codec operating
between 6 and 24 kb/s. For generic audio at bit rates above
16 kb/s, a “time/frequency” perceptual coder is employed,
and in particular the MPEG-2 AAC algorithm with exten-
sions for fine-grain bit-rate scalability [291] is specified in
MPEG-4 version one RM as the time-frequency coder. The
multimodal framework of MPEG-4 audio allows the user to
tailor the coder characteristics (i.e., the signal model) to the
program material.

2) Synthetic Audio Coding Tools:Whereas earlier
MPEG standards treated only natural audio program
material, MPEG-4 achieves very low rate coding by sup-
plementing its natural audio coding techniques with tools
for synthetic audio processing [292] and interfaces for
structured, high-level audio representations. Chief among
these are the text-to-speech interface (TTSI) and methods for
score-driven synthesis. The TTSI provides the capability for
200–1200 b/s transmission of synthetic speech that can be
represented in terms of either text only or text plus prosodic
parameters. Beyond speech, general music synthesis capa-
bilities in MPEG-4 are provided by a set of structured audio
tools [293]–[295]. Synthetic sounds are represented using
the structured audio orchestra language (SAOL). SAOL
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[296] treats music as a collection of instruments and instru-
ments as small networks of signal-processing primitives, all
of which can be downloaded to a decoder. Although no stan-
dard synthesis techniques are specified, available synthesis
methods include the following: wavetable, FM, additive,
physical modeling, granular synthesis, or nonparametric
hybrids of any of these methods [297]. An excellent tutorial
on structured audio methods and applications appeared
recently in [298].

3) MPEG-4 Audio Profiles:Although many coding and
processing tools are available in MPEG-4 audio, cost and
complexity constraints often dictate that it is not practical
to implement all of them in a particular system. Version
1 therefore defines four complexity-ranked audio profiles
intended to help system designers in the task of appro-
priate tool subset selection. In order of bit rate, they are
as follows. The low-rate synthesis audio profile provides
only wavetable-based synthesis and a text-to-speech (TTS)
interface. For natural audio-processing capabilities, the
speech audio profile provides a very low-rate speech coder
and a CELP speech coder. The scaleable audio profile offers
a superset of the first two profiles. With bit rates ranging
from 6 to 24 kb/s and bandwidths from 3.5 to 9 kHz, this
profile is suitable for scalable coding of speech, music, and
synthetic music in applications such as Internet streaming or
narrow-band audio digital broadcasting (NADIB). Finally,
the main audio profile is a superset of all other profiles, and
it contains tools for both natural and synthetic audio.

4) MPEG-4 Audio Version Two:While remaining
backward compatible with MPEG-4 version 1, MPEG-4
version 2 will add new profiles that incorporate a number of
significant system-level and functionality enhancements. At
the system level, version 2 will include a media independent
bitstream format that supports streaming, editing, local
playback, and interchange of contents. Also in version 2, an
MPEG-J “programmatic system” will specify an application
programming interface (API) for interoperation of MPEG
players with JAVA code. New error resilience techniques in
version 2 will allow both equal and unequal error protection
for the audio bit streams. As for functionality, version 2 will
offer improved audio realism in sound rendering. New tools
will allow parameterization of the acoustical properties of
an audio scene, enabling features such as immersive audio-
visual rendering, room acoustical modeling, and enhanced
three-dimensional sound presentation. TTS interfaces from
version 1 will be enhanced in version 2 with a markup
TTS intended for applications such as speech-enhanced
Web browsing, verbal e-mail, and “story-teller” on demand.
MPEG-4 standardization activities are ongoing. One can
obtain up-to-date information from several on-line sources.
For example, structured audio information can be found on
[299]. The complete 2500 page May 1998 MPEG-4 Final
Committee Draft document is also available electronically
from [299].

D. Precision Adaptive Subband Coding

Phillips’ DCC is an example of a consumer product that es-
sentially implements the 384-kb/s stereo mode of MPEG-1,

layer I. A discussion of the “Precision Adaptive Subband
Coding” algorithm and other elements of the DCC system
are given in [300].

E. Adaptive Transform Acoustic Coding

The ATRAC algorithm developed by Sony for use
in its rewritable MiniDisc system makes combined use
of subband and transform coding techniques to achieve
nearly CD-quality coding of 44.1-kHz 16-bit PCM input
data [301] at a bit rate of 146 kb/s per channel [302].
Using a tree-structured QMF analysis bank, the ATRAC
encoder (Fig. 43) first splits the input signal into three
subbands of 0–5.5 kHz, 5.5–11 kHz, and 11–22 kHz. Like
MPEG layer III, the ATRAC QMF bank is followed by
signal-adaptive MDCT analysis [(44)] in each subband.
The window switching scheme works as follows. During
steady-state input periods, high-resolution spectral analysis
is attained using 512 sample blocks (11.6 ms). During
input attack or transient periods, however, short block sizes
of 1.45 ms in the high-frequency band and 2.9 ms in the
low and mid-frequency bands are used to affect pre-echo
cancellation. After MDCT analysis, spectral components
are clustered into 52 nonuniform subbands [block floating
units (BFU’s)] according to a critical band spacing. The
BFU’s are block-companded, quantized, and encoded
according to a psychoacoustically derived bit allocation.
For each analysis frame, the ATRAC encoder transmits
quantized MDCT coefficients, subband window lengths,
BFU scalefactors, and BFU word lengths to the decoder.
Like the MPEG family, the ATRAC architecture decouples
the decoder from psychoacoustic analysis and bit allocation
details. Evolutionary improvements in the encoder bit allo-
cation strategy are therefore possible without modifying the
decoder structure. An added benefit of this architecture is
asymmetric complexity, which enables inexpensive decoder
implementations.

Suggested bit allocation techniques for ATRAC are of
lower complexity than those found in other standards since
ATRAC is intended for low-cost, battery-powered consumer
electronics equipment. One proposed method distributes
bits between BFU’s according to a weighted combination of
fixed and adaptive bit allocations [303]. For theth BFU,
bits are allocated according to the relation

(52)

where
fixed allocation;
signal-adaptive allocation;

parameter constant offset computed to guarantee a
fixed bit rate;

parameter tonality estimate ranging from zero (noise-
like) to one (tone-like).

The fixed allocations are the same for all inputs and
concentrate more bits at lower frequencies. The signal-adap-
tive bit allocations allocate bits according to the
strength of the MDCT components. The effect of (52) is that
more bits are allocated to BFU’s containing strong peaks
for tonal signals. For noise-like signals, bits are allocated
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Fig. 43. Sony ATRAC (MiniDisc, SDDS).

according to the fixed allocation, with low bands receiving
more bits than high bands. Clearly, this method relies on
heuristic principles rather than detailed psychoacoustic
analysis such as the MPEG model recommendations (Sec-
tion VIII-G). The resulting system achieves a reasonable
tradeoff among complexity, quality, and bit rate.

F. Sony Dynamic Digital Sound (SDDS)

In addition to enabling near CD quality on a MiniDisc
medium, the ATRAC algorithm has also been deployed as
the core of Sony’s digital cinematic sound system, SDDS.
SDDS integrates eight independent ATRAC modules to carry
the program information for the left, left center, center, right
center, right, subwoofer, left surround, and right surround
channels typically present in a modern theater. SDDS data
are recorded using optical black and white dot-matrix tech-
nology onto two thin strips along the right and left edges of
the film, outside of the sprocket holes, and each edge contains
four channels. There are 512 ATRAC bits per channel associ-
ated with each movie frame, and each optical data frame con-
tains a matrix of 52 192 bits [304]. SDDS data tracks do
not interfere with or replace the existing analog sound tracks.
Both Reed–Solomon error correction and redundant track
information delayed by 18 frames are employed to make
SDDS robust to bit errors introduced by run-length scratches,
dust, splice points, and defocusing during playback or film
printing. Analog program information is used as a backup in
the event of uncorrectable digital errors.

G. Lucent Technologies Perceptual Audio Coder (PAC),
Enhanced PAC (EPAC), and Multichannel PAC (MPAC)

The pioneering research contributions on perceptual
entropy [45], monophonic PXFM [6], stereophonic PXFM
[305], and ASPEC [9] strongly influenced not only the
MPEG family architecture but also evolved at AT&T Bell
Laboratories into the PAC. AT&T and Lucent Technologies
separated after the MPAC algorithm was evaluated for
MPEG NBC/AAC testing, and the PAC algorithm subse-
quently became proprietary to Lucent. AT&T, meanwhile,
has become active in the MPEG-2 AAC research and
standardization. The low-complexity profile of AAC has

become the AT&T coding standard. Like the MPEG coders,
the current Lucent PAC algorithm is flexible in that it
supports monophonic, stereophonic, and multiple channel
modes. In fact, the bitstream definition will accommodate
up to 16 front side, seven surround, and seven auxiliary
channel pairs, as well as three low-frequency effects (LFE
or subwoofer) channels. Depending upon desired quality,
PAC supports several bit rates. For a modest increase in
complexity at a particular bit rate, moreover, improved
output quality can be realized by enabling enhancements to
the original system (EPAC). For example, whereas 96-kb/s
output was judged to be adequate with stereophonic PAC,
near and transparent CD output qualities were reported at
56–64 kb/s and 128 kb/s, respectively, for stereophonic
EPAC [306]. This section gives an overview of the PAC,
EPAC, and MPAC algorithms, concentrating primarily on
the innovations that differentiate this system from the others
reviewed in this document.

1) PAC: The original PAC system described in [307]
achieves very high-quality coding of stereophonic inputs
at 96 kb/s. Like MPEG-1 layer III and ATRAC, the PAC
encoder [Fig. 44(a)] uses a signal-adaptive MDCT filter
bank to analyze the input spectrum with appropriate fre-
quency resolution. A long window of 2048 points (1024
subbands) is used during steady-state segments, or else a
series of short 256-point windows (128 subbands) is applied
during segments containing transients or sharp attacks. In
contrast to MPEG-1 and ATRAC, however, PAC relies on
the MDCT alone rather than incorporating MDCT analysis
into a hybrid filter bank structure, thus realizing a relative
complexity reduction in the filter bank section. As noted
previously [115], [119], the MDCT lends itself to compact
representation of stationary signals, and a 2048-point block
size yields sufficiently high frequency resolution for most
sources. This segment length was also associated with the
maximum realizable coding gain as a function of block size
[308]. Masking thresholds are used to select one of 128
exponentially distributed quantization step sizes in each
of 49 or 14 coder bands (analogous to ATRAC BFU’s) in
high-resolution and low-resolution modes, respectively. The
coder bands are quantized using an iterative rate control loop
in which thresholds are adjusted to satisfy simultaneously
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(a)

(b)

Fig. 44. Lucent Technologies PAC: (a) PAC and (b) EPAC.

bit-rate constraints and an equal loudness criterion that
attempts to shape quantization noise such that its absolute
loudness is constant relative to the masking threshold. The
rate control loop allows time-varying instantaneous bit rates,
much like the bit reservoir of MPEG-1 layer III. Remaining
statistical redundancies are removed from the stream of
quantized spectral samples prior to bitstream formatting
using eight structured, multidimensional Huffman code-
books.

2) EPAC: In an effort to enhance PAC output quality
at low bitrates, Sinha and Johnston introduced a novel
signal-adaptive MDCT/WP switched filter bank scheme
[Fig. 44(b)], which resulted in nearly transparent coding for
CD-quality source material at 64 kb/s per stereo pair [308].
EPAC is unique in that it switches between two distinct
filter banks rather than relying upon hybrid [17], [302] or
nonuniform cascade [201] structures. In subjective tests
involving 12 expert and nonexpert listeners with difficult
castanets and triangle test signals, EPAC outperformed PAC
at a rate of 64-kb/s per stereo pair by an average of 0.4–0.6
on a five-point quality scale.

3) MPAC: Like the MPEG, AC-3, and SDDS systems,
the PAC algorithm also extends its monophonic processing
capabilities into stereophonic and multiple channel modes.
Stereophonic PAC computes individual masking thresholds
for the left, right, mono, and stereo ( ,
and ) signals using a version of the monophonic
perceptual model that has been modified to account for bi-
nary-level masking differences (BLMD’s) or binaural un-
masking effects [309]. Then, monaural PAC methods encode
either the signal pairs or . In order to minimize the
overall bit rate, however, an switching procedure
is embedded in the rate control loop such that different en-
coding modes ( or ) can be applied to the individual
coder bands on the same analysis frame. MPAC was found to
produce the best quality at 320 kb/s for five channels during
a recent ISO test of multichannel algorithms [310].

4) Applications: Both 128- and 160-kb/s stereophonic
versions of PAC are currently being considered for stan-

dardization in the U.S. DAR project. In an effort to provide
graceful degradation and extend broadcast range in the
presence of heavy fading associated with fringe reception
areas, perceptually motivated unequal error protection (UEP
channel coding) schemes were examined in [311]. The
availability of JAVA PAC decoder implementations are
reportedly increasing PAC deployment among suppliers of
internet audio program material [306]. MPAC has been con-
sidered for cinematic and advanced television applications.
Real-time PAC and EPAC decoder implementations have
been demonstrated on 486-class PC platforms.

H. DOLBY AC-2, AC-2A

Since the late 1980’s, Dolby Laboratories has been ac-
tive in perceptual audio coding research and standardiza-
tion, and Dolby researchers have made numerous scientific
contributions within the collaborative framework of MPEG
audio. On the commercial front, Dolby has developed the
AC-2 and the AC-3 algorithms [268]. The AC-2 [312],
[313] is a family of single-channel algorithms operating
at bit rates between 128 and 192 kb/s for 20-kHz band-
width input sampled at 44.1 or 48 kHz. There are four
available AC-2 variants, all of which share a common ar-
chitecture in which the input is mapped to the frequency
domain by an evenly stacked TDAC filter bank [87] with
a novel parametric Kaiser–Bessel analysis window (Sec-
tions III-C and VIII-B) optimized for improved stopband
attenuation relative to the sine window. The evenly stacked
TDAC differs from the oddly stacked MDCT in that the
evenly stacked low-band filter is half-band, and its mag-
nitude response wraps around the foldover frequency (see
Section III). A unique mantissa-exponent coding scheme
is applied to the TDAC transform coefficients. First, sets
of frequency-adjacent coefficients are grouped into blocks
(subbands) of roughly critical bandwidth. For each, the
block maximum is identified and then quantized as an
exponent in terms of the number of left shifts required
until overflow occurs. The collection of exponents forms
a stair-step spectral envelope having 6 dB (left shift
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multiply by dB) resolution, and normalizing the
transform coefficients by the envelope generates a set of
mantissas. The envelope approximates the short-time spec-
trum, and therefore a perceptual model uses the exponents
to compute both a fixed and a signal-adaptive bit alloca-
tion for the mantissas on each frame. As far as details on
the four AC-2 variants are concerned, two versions are de-
signed for low-complexity, low-delay applications, and the
other two for higher quality at the expense of increased
delay or complexity. The AC-2A [314] algorithm employs
a switched 128/512-point TDAC filter bank to improve
quality for transient signals. One AC-2 feature that is
unique among the standards is that the perceptual model
is backward adaptive, meaning that the bit allocation is not
transmitted explicitly. Instead, the AC-2 decoder extracts
the bit allocation from the quantized spectral envelope
using the same perceptual model as the AC-2 encoder.
This structure leads to a significant reduction of side in-
formation and induces a symmetric encoder/decoder com-
plexity, which was well suited to the original AC-2 target
application of single point-to-point audio transport. An ex-
ample single point-to-point system now using low-delay
AC-2 is the DolbyFAX, a full-duplex codec that carries
simultaneously two channels in both directions over four
ISDN “B” links for film and TV studio distance col-
laboration. Low-delay AC-2 codecs have also been in-
stalled on 950 MHz wireless digital studio transmitter
links (DSTL’s). The AC-2 moderate delay and AC-2A
algorithms have been used for both network and wireless
broadcast applications such as cable and DBS television.
I. Dolby AC-3/Dolby Digital/Dolby SRD

The 5.1-channel “surround” format that had become the
de factostandard in most movie houses during the 1980’s
was becoming ubiquitous in home theaters of the 1990’s
that were equipped with matrixed multichannel sound (e.g.,
Dolby ProLogic). As a result of this trend, it was clear that
emerging applications for perceptual coding would eventu-
ally minimally require stereophonic or even multichannel
surround-sound capabilities to gain consumer acceptance.
Although single-channel algorithms such as the AC-2 can
run on parallel independent channels, significantly better
performance can be realized by treating multiple channels
together in order to exploit interchannel redundancies and
irrelevancies. The Dolby Laboratories AC-3 algorithm
[315]–[317], also known as “Dolby Digital” or “SRD,” was
developed specifically for multichannel coding by refining
all of the fundamental AC-2 blocks, including the filter
bank, the spectral envelope encoding, the perceptual model,
and the bit allocation. The coder carries 5.1 channels of
audio (left, center, right, left surround, right surround, and a
subwoofer), but at the same time it incorporates a flexible
downmix strategy at the decoder to maintain compatibility
with conventional monaural and stereophonic sound repro-
duction systems. The “.1” channel is usually reserved for
low-frequency effects and is low-pass bandlimited below
120 Hz. The main features of the AC-3 algorithm are as
follows:

• sample rates: 32, 44.1, and 48 kHz;
• high-quality output at 64 kb/s per channel;
• MDCT filter bank (TDAC [90]), KBD window;
• spectral envelope represented by exponents;
• hybrid forward–backward adaptive perceptual model;
• uniform quantization of mantissas;
• multiple channels processed as an ensemble;
• robust decoder downmix functionality;
• board-level real-time encoders available;
• bit rates: 32–640 kb/s, variable;
• delay roughly 100 ms;
• exponents/mantissa quantization/encoding;
• signal-adaptive exponent strategy;
• parametric bit allocation;
• perceptual model improvements possible;
• frequency-selective intensity coding, LR, MS;
• integral dynamic range control system;
• chip-level real-time decoders available.

The AC-3 works in the following way. A signal-adaptive
MDCT filter bank with a customized KBD window (Sec-
tions III-C and VIII-B) maps the input to the frequency do-
main. Long windows are applied during steady-state seg-
ments, and a pair of short windows is used for transient seg-
ments. The MDCT coefficients are quantized and encoded
by an exponent/mantissa scheme similar to AC-2. Bit alloca-
tion for the mantissas is performed according to a perceptual
model that estimates the masked threshold from the quan-
tized spectral envelope. Like AC-2, an identical perceptual
model resides at both the encoder and decoder to allow for
backward adaptive bit allocation on the basis of the spectral
envelope, thus reducing the burden of side information on
the bitstream. Unlike AC-2, however, the perceptual model is
also forward adaptive in the sense that it is parametric. Model
parameters can be changed at the encoder and the new param-
eters transmitted to the decoder in order to affect modified
masked threshold calculations. Particularly at lower bit rates,
the perceptual bit allocation may yield insufficient bits to sat-
isfy both the masked threshold and the rate constraint. When
this happens, mid/side (MS) and intensity coding (“channel
coupling” above 2 kHz) reduce the demand for bits by ex-
ploiting, respectively, interchannel redundancies and irrele-
vancies. Ultimately, exponents, mantissas, coupling data, and
exponent strategy data are combined and transmitted to the
receiver.

1) Filter Bank: Although the high-level AC-3 structure
(Fig. 45) resembles that of AC-2, there are significant dif-
ferences between the two algorithms. Like AC-2, the AC-3
algorithm first maps input samples to the frequency domain
using a PR cosine-modulated filter bank with a novel KBD
window (Sections III-C and VIII-B, parameters in [268]).
Unlike AC-2, however, AC-3 is based on the oddly stacked
MDCT. The AC-3 also handles window switching differently
than AC-2A. Long, 512-sample (93.75 Hz res. at 48 kHz)
windows are used to achieve reasonable coding gain during
stationary segments. During transients, however, a pair of
256-sample windows replaces the long window to minimize
pre-echoes. Also in contrast to the MPEG and AC-2 algo-
rithms, the AC-3 MDCT filter bank retains PR properties
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Fig. 45. Dolby AC-3 encoder.

during window switching without resorting to bridge win-
dows by introducing a suitable phase shift into the MDCT
basis vectors (equations given in [106]) for one of the two
short transforms. Whenever a scheme similar to the one used
in AC-2A detects transients, short filter bank windows may
activate independently on any one or more of the 5.1 chan-
nels.

2) Exponent Strategy:The AC-3 algorithm uses a refined
version of the AC-2 exponent/mantissa MDCT coefficient
representation, resulting in a significantly improved coding
gain. In AC-3, the MDCT coefficients corresponding to
1536 input samples (six transform blocks) are combined into
a single frame. Then, a frame processing routine optimizes
the exponent representation to exploit temporal redundancy,
while at the same time representing the stair-step spectral
envelope with adequate frequency resolution. In particular,
spectral envelopes are formed from partitions of either one,
two, or four consecutive MDCT coefficients on each of the
six MDCT blocks in the frame. To exploit time redundancy,
the six envelopes can be represented individually, or any
or all of the six can be combined into temporal partitions.
The AC-3 exponent strategy exploits in a signal-dependent
fashion the time- and frequency-domain redundancies that
exist on a frame of MDCT coefficients.

3) Perceptual Model:A novel parametric forward–back-
ward adaptive perceptual model estimates the masked
threshold on each frame. The forward-adaptive component
exists only at the encoder. Given a rate constraint, this block
interacts with an iterative rate control loop to determine the
best set of perceptual model parameters. These parameters
are passed to the backward adaptive component, which
estimates the masked threshold by applying the parameters
from the forward-adaptive component to a calculation
involving the quantized spectral envelope. Identical back-
ward adaptive model components are embedded in both
the encoder and decoder. Thus, model parameters are fixed
at the encoder after several threshold calculations in an
iterative rate control process and then transmitted to the
decoder. The parametric perceptual model also provides a
convenient upgrade path in the form of a bit allocation delta
parameter. It was envisioned that future, more sophisticated
AC-3 encoders might run in parallel two perceptual models,
with one being the original reference model and the other

being an enhanced model with more accurate estimates of
masked threshold. The delta parameter allows the encoder to
transmit a stair-step function for which each tread specifies a
masking level adjustment for an integral number of 1/2-Bark
bands. Thus, the masking model can be incrementally
improved without alterations to the existing decoders. Other
details on the hybrid backward-forward AC-3 perceptual
model can be found in [269].

4) Bit Allocation and Mantissa Quantization:A bit
allocation is determined at the encoder for each frame of
mantissas by an iterative procedure that adjusts the mantissa
quantizers, the multichannel coding strategies (below), and
the forward-adaptive model parameters to satisfy simultane-
ously the specified rate constraint and the masked threshold.
In a manner similar to MPEG-1, quantizers are selected
for the set of mantissas in each partition based on an SMR
calculation. Sufficient bits are allocated to ensure that the
SNR for the quantized mantissas is greater than or equal
to the SMR. If the bit supply is insufficient to satisfy the
masked threshold, then SNR’s can be reduced in selected
threshold partitions until the rate is satisfied, or intensity
coding and MS transformations are used in a frequency-se-
lective fashion to reduce the bit demand. Unlike some of the
other standardized algorithms, the AC-3 does not include an
explicit lossless coding stage for final redundancy reduction
after quantization and encoding.

5) Multichannel Coding:When bit demand imposed
by multiple independent channels exceeds the bit budget,
the AC-3 ensemble processing of 5.1 channels exploits
interchannel redundancies and irrelevancies, respectively, by
making frequency-selective use of MS and intensity coding
techniques. Although the MS and intensity functions can be
simultaneously active on a given channel, they are restricted
to nonoverlapping subbands. The MS scheme is carefully
controlled [317] to maintain compatibility between AC-3
and matrixed surround systems such as Dolby ProLogic.
Intensity coding, also known as channel coupling, is a
multichannel irrelevancy reduction coding technique that
exploits properties of spatial hearing. There is considerable
experimental evidence [318] suggesting that the interaural
time difference of a signal’s fine structure has negligible
influence on sound localization above a certain frequency.
Instead, the ear evaluates primarily energy envelopes. Thus,
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the idea behind intensity coding is to transmit only one
envelope in place of two or more sufficiently correlated
spectra from independent channels, together with some
side information. The side information consists of a set of
coefficients that is used to recover individual spectra from
the intensity channel.

6) System-Level Functions:At the system level, AC-3
provides mechanisms for channel downmixing and dynamic
range control. Downmix capability is essential for the 5.1
channel system since the majority of potential playback sys-
tems are still monaural or, at best, stereophonic. Downmixing
is performed at the decoder in the frequency domain rather
than the time domain to minimize complexity. This is pos-
sible because of the filter bank linearity. The bitstream car-
ries some downmix information since different listening sit-
uations call for different downmix weighting. Dialog level
normalization is also available at the decoder. Finally, the
bitstream has available facilities to handle other control and
ancillary user information such as copyright, language, pro-
duction, and time-code data [319].

7) Complexity: Assuming the standard HDTV configu-
ration of 384 kb/s with a 48-kHz sample rate and imple-
mentation using the Zoran ZR38001 general-purpose DSP
instruction set, the AC-3 decoder memory requirements and
complexity are as follows: 6.6 kb RAM, 5.4 kb ROM, 27.3
MIPS for 5.1 channels; and 3.1 kb RAM, 5.4 kb ROM, and
26.5 MIPS for two channels [320]. Note that complexity
estimates are processor-dependent. For example, on a Mo-
torola DSP56002, 45 MIPS are required for a 5.1-channel
decoder. Encoder complexity varies between two and five
times decoder complexity depending on the encoder sophis-
tication [320]. Numerous real-time encoder and decoder im-
plementations have been reported. Early on, for example, a
single-chip decoder was implemented on a Zoran DSP [321].
More recently, a DP561 AC-3 encoder (5.1 channels, 44.1-
or 48-kHz sample rate) for DVD mastering was implemented
in real time on a DOS/Windows PC host with a plug-in DSP
subsystem. The computational requirements were handled
by an Ariel PC-Hydra DSP array of eight Texas Instruments
TMS 320C44 floating point DSP devices clocked at 50 MHz
[322]. The authors also reported on anticipated completion of
a similar real-time encoder with only two or three 80-MHz
fixed-point Motorola 56 300 DSP devices [322].

8) Applications and Standardization:The first popular
AC-3 application was in the cinema. The “Dolby Digital” or
“SR D” AC-3 information is interleaved between sprocket
holes on one side of the 35-mm film. The AC-3 was first
deployed in only three theaters for the filmStar Trek VI
in 1991, after which the official rollout of Dolby SR D
occurred in 1992 withBatman Returns. By 1997, more than
900 film soundtracks had been AC-3 encoded. Nowadays,
the AC-3 algorithm is finding use in DVD, cable televi-
sion, and DBS. Many high-fidelity amplifiers and receiver
units now contain embedded AC-3 decoders and accept
an AC-3 digital rather than an analog feed from external
sources such as DVD. In addition, the DP504/524 version
of the DolbyFAX system (Section VIII-H) has added AC-3
stereo and MPEG-1 Layer II to the original AC-2-based

system. Film, television, and music studios use DolbyFAX
over ISDN links for automatic dialog replacement, music
collaboration, sound-effects delivery, and remote videotape
audio playback. As far as standardization is concerned, the
U.S. Advanced Television Systems Committee (ATSC) has
adopted the AC-3 algorithm as the A/52 audio compression
standard [362] and as the audio component of the A/52
DTV standard [323]. The U.S. Federal Communications
Commission in December 1996 adopted the ATSC standard
for DTV, including the AC-3 audio component. On the
international standardization front, the Digital Audio-Visual
Council (DAVIC) selected AC-3 and MPEG-1, layer II for
the audio component of the DAVIC 1.2 specification [324].
Moreover, the Society of Cable and Telecommunications
Engineers has considered AC-3 for standardization.

IX. QUALITY MEASURES FORPERCEPTUALAUDIO CODING

In many situations, and particularly in the context of
standardization activities, performance measures are needed
to evaluate whether one of the established or emerging
techniques in perceptual audio coding is in some sense
superior to the available alternative methods. Perceptual
audio codecs are most often evaluated in terms of bit rate,
complexity, delay, robustness, and output quality. Of these,
all but robustness and output quality can be quantified in
straightforward objective terms. Reliable and repeatable
output quality assessment (which is related to robustness),
on the other hand, presents a significant challenge. It is
well known that perceptual coders can achieve transparent
quality over a very broad, highly signal-dependent range
of segmental SNR’s ranging from as low as 13 dB to
as high as 90 dB. Classical objective measures of signal
fidelity such as SNR or total harmonic distortion (THD)
are therefore completely inadequate [325]. As a result,
time-consuming and expensive subjective listening tests are
required to measure the small impairments that most often
characterize the high-quality perceptual coding algorithms.
Despite some confounding factors, subjective listening tests
are nevertheless the most reliable tool available for codec
quality evaluation, and standardized listening test procedures
have been developed to maximize reliability. This section
offers a perspective on quality measures for perceptual
audio coding. The first portion describes subjective quality
measurement techniques for perceptual audio coders and
identifies confounding factors that complicate subjective
tests, and the second portion gives sample subjective test
results from several of the two- and 5.1-channel standards.

A. Subjective Quality Measures

Although listening tests are often conducted informally,
the ITU-R Recommendation BS.1116 [275] formally
specifies a listening environment and test procedure appro-
priate for subjective evaluations of the small impairments
associated with high quality audio codecs. The standard
procedure calls for grading by expert listeners [326] using
the CCIR “continuous” impairment scale [Fig. 46(a)] [327]
in a double blind, A-B-C triple-stimulus hidden reference
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comparison paradigm. While stimulus A always contains
the reference (uncoded) signal, the B and C stimuli contain
in random order a repetition of the reference and then the
impaired (coded) signal, i.e., either B or C is a hidden refer-
ence. After listening to all three, the subject must identify
either B or C as the hidden reference, and then grade the
impaired stimulus (coded signal) relative to the reference
stimulus using the five-category, 41-point “continuous”
absolute category rating (ACR) impairment scale shown in
the left-hand column of Fig. 46(a). A default grade of 5.0
is assigned to the stimulus identified by the subject as the
hidden reference. A subjective difference grade (SDG) is
computed by subtracting the score assigned to the actual
hidden reference from the score assigned to the actual
impaired signal. Nearly transparent quality for the coded
signal is implied if the hidden reference mean subjective
score (MSS) lies within the 95% confidence interval of the
coded signal and the coded signal MSS lies within the 95%
confidence interval of the hidden reference. It is important to
note the difference between the small impairment subjective
measurements in [275] and the five-point MOS most often
associated with speech coding algorithms [328]. Unlike the
small impairment scale, the scale of the speech coding MOS
is discrete, and scores are absolute rather than relative to a
hidden reference. To emphasize this difference, it has been
proposed [329] that MSS denote the small impairment sub-
jective score for perceptual audio coders. Unless otherwise
specified, the subjective listening test scores cited for the
various algorithms described in this paper are from either
the absolute or the differential small impairment scales in
Fig. 46(a).

It is important to realize that the most reliable subjective
evaluation strategy for a given perceptual codec depends on
the nature of the coding distortion. Although the small-scale
impairments associated with nearly transparent coding are
well characterized by measurements relative to a reference
standard using a fine-grade scale, some experts have argued
that the more audible distortions associated with nontrans-
parent coding are best measured using a different scale
that can better cope with large impairments. For example,
in recent listening tests [330] on 16-kb/s codecs for the
WorldSpace satellite communications system, it was deter-
mined that an ITU-T P.800/P.830 seven-point comparison
category rating (CCR) method [331] was better suited to
the evaluation task [Fig. 46(b)] than the scale of BS.1116
because of the nontransparent quality associated with the test
signal. Investigators preferred the CCR over both the small
impairment scale as well as the five-point ACR commonly
used in tests of speech codecs. A listening test standard for
large-scale impairments analogous to BS.1116 does not yet
exist for audio codec evaluation.

B. Confounding Factors in Subjective Evaluations

Regardless of the particular grading scale in use,
subjective test outcomes generated using even rigorous
methodologies such as the ITU-R BS.1116 are still in-
fluenced by factors such as context, site selection, and

(a)

(b)

Fig. 46. Subjective quality scales: (a) ITU-R Rec. BS.1116 [275]
small impairment scale for absolute and differential subjective
quality grades and (b) ITU-T Rec. P.800/P.830 [331] large
impairment comparison category rating.

individual listener acuity (physical) or preference (cogni-
tive). Before comparing subjective test results on particular
codecs, therefore, one should be prepared to interpret the
subjective scores with some care. For example, consider
the variability of “expert” listeners. A study of decision
strategies [332] using multidimensional scaling techniques
[333] found that subjects disagree on the relative importance
with which to weigh perceptual criteria during impairment
detection tasks. In another study [334], Shlien and Soulodre
presented experimental evidence that can be interpreted
as a repudiation of the “golden ear.” Expert listeners were
tasked with discriminating between clean audio and audio
corrupted by low-level artifacts typically induced by audio
codecs (five types were analyzed in [335]), including
pre-echo distortion, unmasked granular (quantization) noise,
and high-frequency boost or attenuation. Different experts
were sensitive to different artifact types. Sporer reached
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similar conclusions after yet a third study of expert listeners
[329]. Nonhuman factors also influence subjective listening
test outcomes. For example, playback level (SPL) and back-
ground noise, respectively, can influence excitation pattern
shapes and introduce undesired masking effects. Moreover,
the presentation method can strongly influence perceived
quality, because loudspeakers introduce distortions on their
own and in conjunction with a listening room. These effects
can introduce site dependencies. In short, although they
have proven effective, existing subjective test procedures
for audio codecs are clearly suboptimal. Recent research
into more reliable tools for subjective codec evaluations has
shown promise and is continuing. For example, Moulton
Laboratories investigated [336], [337] the effectiveness
of multifacet Rasch models [338] for improved reliability
of subjective listening tests on high-quality audio codecs.
The Rasch model [339] is a statistical analysis technique
designed to remove the effects of local disturbances on
test outcomes. The impact of Rasch analysis on the relia-
bility of subjective audio codec evaluations is still under
investigation. Meanwhile, the unreliability of subjective
tests has motivated considerable research into develop-
ment of automatic perceptual measurement schemes (e.g.,
[340]–[346], [186], [347]–[351]) that has ultimately led
to the adoption of an international standard for perceptual
quality measurement, ITU-R BS.1387 [352]. Experts do
not consider the standardized algorithm to be a human
subject replacement, however, and research into improved
perceptual measurement schemes will continue (e.g., ITU-R
JWP10-11Q). Automatic perceptual measurement of com-
pressed high-fidelity audio quality is a fascinating topic that
is treated in more detail elsewhere (e.g., [36] and [353]).

C. Subjective Evaluations of Two-Channel Standardized
Codecs

The influence of site and subject dependencies on
subjective listening tests can potentially invalidate direct
comparisons between independent test results for different
algorithms. Ideally, fair intercodec comparisons require
that scores are obtained from a single site with the same
test subjects. Soulodre,et al. conducted a formal ITU-R
BS.1116-compliant [275] listening test that compared sev-
eral standardized two-channel stereo codecs [354], including
the MPEG-1 Layer 2 [17], the MPEG-1 Layer 3 [17], the
MPEG-2 AAC [112], the Lucent Technologies PAC [16],
and the Dolby AC-3 [268] codecs. In all, 17 algorithm/bit
rate combinations were examined, using listening material
deemed critical by experts.

The test results, reproduced in Table 2, clearly show eight
performance classes. The AAC and AC-3 codecs at 128
and 192 kb/s, respectively, exhibited the best performance
with mean difference grades better than1.0. The MPEG-2
AAC algorithm at 128 kb/s, however, was the only codec
that satisfied the quality requirements defined by ITU-R
Rec. BS.1115 [355] for perceptual audio coding systems in
broadcast applications, namely, that there not be any audio
materials rated below 1.00. Overall, the ranking of the

Table 2
Comparison of Standardized Two-Channel Algorithms
(After [354])

Table 3
Comparison of Standardized 5.1-Channel Algorithms

families from best to worst with respect to quality was AAC,
PAC, MPEG-1 Layer 3, AC-3, MPEG-1 Layer 2, and ITIS
(MPEG-1, LII, hardware implementation). The class three
results can be interpreted to mean that bit rate increases of
32, 64, and 96 kb/s per stereo pair are required for the PAC,
AC-3, and Layer 2 codec families, respectively, to match
the output quality of the MPEG-2 AAC at 96 kb/s per stereo
pair.

D. Subjective Evaluations of 5.1-Channel Standardized
Codecs

Multichannel perceptual audio coders are increasingly
in demand for multimedia, cinema, and home theater ap-
plications. As a result, the European Broadcasting Union
recently sponsored Deutsche Telekom Berkom in a formal
subjective evaluation [356] that compared the output quality
for real-time implementations of the 5.1 channel Dolby
AC-3 and the matrixed 5.1-channel MPEG-2/BC Layer 2
algorithms at bit rates between 384 and 640 kb/s (Table
3). The tests adhered to the methodologies outlined in ITU
BS.1116, and the five-channel listening environment was
configured according to ITU-R Rec. BS.775 [357]. The
resulting difference grades given in Table 3 represent aver-
ages of the mean grades reported for a collection of eight
critical test items. None of the tested codec configurations
satisfied “transparency.” More sophisticated multichannel
algorithms such as Lucent PAC and MPEG-2 AAC were not
examined in this test because they were not considered to be
sufficiently well established on the market [356].
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Table 4
Audio Coding Standards and Applications

X. CONCLUSION

A. Summary of Applications for Commercial and
International Standards

Current applications (Table 4) for embedded audio coding
include DBA [358], [359], DBS [360], DVD [361], high-def-
inition television (HDTV) [362], cinematic theater [363], and
audio-on-demand over wide area networks such as the In-
ternet [364]. Audio coding has also enabled miniaturization
of digital audio storage media such as Compact MiniDisk
[365] and DCC [366], [367]. With the advent of the “.MP3”
audio format, which denotes audio files that have been com-
pressed using the MPEG-1, Layer III algorithm, perceptual
audio coding has become of central importance to over-net-
work exchange of multimedia information, and has recently
been integrated into several popular portable consumer audio
playback devices that are specifically designed for web com-
patibility. In addition, DolbyNET, a version of the AC-3 algo-
rithm, has been successfully integrated into streaming audio
processors for delivery of audio on demand to the desktop
Web browser.

B. Summary of Recent Research and Future Research
Directions

The level of sophistication and high performance achieved
by the standards listed in Table 4 reflects the fact that audio
coding algorithms have matured rapidly in less than a
decade. The emphasis nowadays has shifted to realizations
of low-rate, low-complexity, and low-delay algorithms
[368]. Using primarily transform [369], subband (filter
bank/wavelet) [370]–[374], and other [375]–[377] coding
methodologies coupled with perceptual bit allocation strate-
gies, new algorithms continue to advance the state-of-the
art in terms of bit rates and quality. Sinha and Johnston, for
example, reported transparent CD quality at 64/32 kb/s for
stereo/mono [373] sources. Other new algorithms include
extended capacity for multichannel/multilanguage systems
[363], [378], [379]. In addition to pursuing the usual goals
of transparent compression at lower bit rates (below 64
kb/s/channel) with reduced complexity, minimal delay

[380], and enhanced bit error robustness [401], an emerging
trend for future research in audio coding is concerned
with the development of algorithms that offer scalability
[381]–[387]. Scalable algorithms will ultimately be used
to accommodate the unique challenges associated with
audio transmission over time-varying channels such as the
packet-switched networks that compose the Internet, as
well as time-varying wireless channels. Network-specific
design considerations are also motivating research into joint
source-channel coding [388] for audio over the Internet.
Another emerging trend is one of convergence between
low-rate audio coding algorithms and speech coders, which
are increasingly embedding mechanisms to exploit percep-
tual irrelevancies [389], [390], [399], [400]. Research is
also ongoing into potential improvements for the various
perceptual coder building blocks, such as novel filter banks
for low-delay coding and reduced pre-echo [391], [404]
and new psychoacoustic signal analysis techniques [392],
[393]. Researchers are also investigating new algorithms
for tasks of peripheral interest to perceptual audio coding
such as transform-domain signal modifications [394] and
digital watermarking [395], [396]. Finally, considerable
investigation is continuing into perceptual quality mea-
surements for coder evaluations in terms of both subjective
[336], [337] and objective methodologies. In fact, after a
competition between and then ultimately a collaboration
by several research teams, the ITU-R recently adopted an
automatic perceptual measurement system, ITU-R BS-1387
[397], [402], [403] intended to assist in the tasks of codec
selection, evaluation, and maintenance. Future research will
continue in all of these areas.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and corrections.

REFERENCES

[1] Compact Disc Digital Audio System, (IEC/ANSI) CEI-IEC-908,
1987.

504 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000



[2] C. Todd, “A digital audio system for broadcast and prerecorded
media,” inProc. 75th Conv. Aud. Eng. Soc., Mar. 1984, preprint.

[3] E. F. Schroder and W. Voessing, “High quality digital audio encoding
with 3.0 bits/sample using adaptive transform coding,” inProc. 80th
Conv. Aud. Eng. Soc., Mar. 1986, preprint 2321.

[4] G. Theile, G. Stoll, and M. Link, “Low-bit rate coding of high
quality audio signals,” inProc. 82nd Conv. Aud. Eng. Soc., Mar.
1987, preprint 2432.

[5] K. Brandenburg, “OCF—A new coding algorithm for high quality
sound signals,” inProc. ICASSP-87, May 1987, pp. 5.1.1–5.1.4.

[6] J. Johnston, “Transform coding of audio signals using perceptual
noise criteria,”IEEE J. Select. Areas Commun., vol. 6, pp. 314–323,
Feb. 1988.

[7] W.-Y. Chan and A. Gersho, “High fidelity audio transform coding
with vector quantization,” inProc. ICASSP-90, May 1990, pp.
1109–1112.

[8] K. Brandenburg and J. D. Johnston, “Second generation perceptual
audio coding: The hybrid coder,” inProc. 88th Conv. Aud. Eng. Soc.,
Mar. 1990, preprint 2937.

[9] K. Brandenburg, J. Herre, J. D. Johnston, Y. Mahieux, and E.
Schroeder, “ASPEC: Adaptive spectral entropy coding of high
quality music signals,” inProc. 90th Conv. Aud. Eng. Soc., Feb.
1991, preprint 3011.

[10] Y. F. Dehery, M. Lever, and P. Urcun, “A MUSICAM source codec
for digital audio broadcasting and storage,” inProc. ICASSP-91,
May 1991, pp. 3605–3608.

[11] M. Iwadare, A. Sugiyama, F. Hazu, A. Hirano, and T. Nishitiani, “A
128 kb/s hi-fi audio CODEC based on adaptive transform coding
with adaptive block size MDCT,”IEEE J. Select. Areas Commun.,
pp. 138–144, Jan. 1992.

[12] K. Brandenburg and G. Stoll, “ISO-MPEG-1 audio: A generic stan-
dard for coding of high-quality digital audio,”J. Audio Eng. Soc.,
pp. 780–792, Oct. 1994.

[13] G. Stoll, S. Nielsen, and L. van de Kerkhof, “Generic architecture
of the ISO/MPEG audio layer I and II—Compatible developments
to improve the quality and addition of new features,” inProc. 95th
Conv. Aud. Eng. Soc., Oct. 1993, preprint 3697.

[14] J. B. Rault, P. Philippe, and M. Lever, “MUSICAM (ISO/MPEG
audio) very low bit-rate coding at reduced sampling frequency,” in
Proc. 95th Conv. Aud. Eng. Soc., Oct. 1993, preprint 3741.

[15] G. Stoll, G. Theile, S. Nielsen, A. Silzle, M. Link, R. Sedlmeyer, and
A. Brefort, “Extension of ISO/MPEG-audio layer II to multi-channel
coding—The future standard for broadcasting, telecommunication,
and multilmedia applications,” inProc. 94th Conv. Aud. Eng. Soc.,
Mar. 1993, preprint 3550.

[16] J. D. Johnstonet al., “The AT&T perceptual audio coder (PAC),”
presented at the AES Convention, New York, Oct. 1995.

[17] ISO/IEC, JTC1/SC29/WG11 MPEG, “Information tech-
nology—Coding of moving pictures and associated audio for
digital storage media at up to about 1.5 Mbit/s—Part 3: Audio,”,
IS11172-3 1992 ("MPEG-1").

[18] ISO/IEC, JTC1/SC29/WG11 MPEG, “Information tech-
nology—Generic coding of moving pictures and associated
audio—Part 3: Audio,”, IS13818-3 1994 ("MPEG-2").

[19] F. Wylie, “Predictive or perceptual coding...apt-X and apt-Q,” in
Proc. 100th Conv. Aud. Eng. Soc., May 1996, preprint 4200.

[20] P. Craven and M. Gerzon, “Lossless coding for audio discs,”J. Audio
Eng. Soc., pp. 706–720, Sept. 1996.

[21] J. R. Stuart. (1995, June) A proposal for the high-quality audio
application of high-density CD carriers. Technical Subcommittee
Acoustic Renaissance for Audio. [Online] Available WWW:
http://www.meridian.co.uk/ara/araconta.html.

[22] T. Cover and J. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[23] I. Witten, “Arithmetic coding for data compression,”Commun.
ACM, vol. 30, no. 6, pp. 520–540, June 1987.

[24] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,”IEEE Trans. Inform. Theory, vol. IT–23, pp.
337–343, May 1977.

[25] T. Welch, “A technique for high performance data compression,”
IEEE Trans. Comput., vol. C-17, pp. 8–19, June 1984.

[26] N. Jayant, J. D. Johnston, and V. Shoham, “Coding of wideband
speech,”Speech Commun., pp. 127–138, June 1992.

[27] N. Jayant, “High quality coding of telephone speech and wideband
audio,” in Advances in Speech Signal Processing, S. Furui and M.
M. Sondhi, Eds. New York: Dekker, 1992.

[28] J. Johnston and K. Brandenburg, “Wideband coding—Perceptual
considerations for speech and music,” inAdvances in Speech Signal
Processing, S. Furui and M. M. Sondhi, Eds. New York: Dekker,
1992.

[29] N. Jayant, J. D. Johnston, and R. Safranek, “Signal compression
based on models of human perception,”Proc. IEEE, vol. 81, pp.
1385–1422, Oct. 1993.

[30] P. Noll, “Wideband speech and audio coding,”IEEE Commun. Mag.,
pp. 34–44, Nov. 1993.

[31] , “Digital audio coding for visual communications,”Proc.
IEEE, vol. 83, pp. 925–943, June 1995.

[32] K. Brandenburg, “Introduction to perceptual coding,” inCollected
Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and C.
Grewin, Eds., 1996, pp. 23–30.

[33] J. Johnston, “Audio coding with filter banks,” inSubband and
Wavelet Transforms, A. Akansu and M. J. T. Smith, Eds: Kluwer
Academic, 1996, pp. 287–307.

[34] N. Gilchrist and C. Grewin, Eds.,Collected Papers on Digital Audio
Bit-Rate Reduction: Aud. Eng. Soc., 1996.

[35] The Digital Signal Processing Handbook, V. Madisetti and D.
Williams, Eds., CRC Press, Boca Raton, FL, 1998, pp. 38.1–44.8.

[36] M. Kahrs and K. Brandenburg, Eds.,Applications of Digital
Signal Processing to Audio and Acoustics. Boston, MA: Kluwer
Academic, 1998.

[37] H. Fletcher, “Auditory patterns,”Rev. Mod. Phys., pp. 47–65, Jan.
1940.

[38] D. D. Greenwood, “Critical bandwidth and the frequency co-
ordinates of the Basilar membrane,”J. Acoust. Soc. Amer., pp.
1344–1356, Oct. 1961.

[39] J. Zwislocki, “Analysis of some auditory characteristics,” in
Handbook of Mathematical Psychology, R. Luce, R. Bush, and E.
Galanter, Eds. New York: Wiley, 1965.

[40] B. Scharf, “Critical bands,” inFoundations of Modern Auditory
Theory. New York: Academic, 1970.

[41] R. Hellman, “Asymmetry of masking between noise and tone,”
Percep. Psychphys., vol. 11, pp. 241–246, 1972.

[42] E. Zwicker and H. Fastl, Psychoacoustics Facts and
Models. Berlin, Germany: Springer-Verlag, 1990.

[43] E. Zwicker and U. Zwicker, “Audio engineering and psychoacous-
tics—Matching signals to the final receiver, the human auditory
system,”J. Audio Eng. Soc., pp. 115–126, Mar. 1991.

[44] M. Schroeder, B. S. Atal, and J. L. Hall, “Optimizing digital speech
coders by exploiting masking properties of the human ear,”J. Acoust.
Soc. Amer., pp. 1647–1652, Dec. 1979.

[45] J. Johnston, “Estimation of perceptual entropy using noise masking
criteria,” in Proc. ICASSP-88, May 1988, pp. 2524–2527.

[46] E. Terhardt, “Calculating virtual pitch,”Hearing Res., vol. 1, pp.
155–182, 1979.

[47] G. von Bekesy,Experiments in Hearing. New York: McGraw-Hill,
1960.

[48] D. Greenwood, “A cochlear frequency-position function for sev-
eral species: 29 years later,”J. Acoust. Soc. Amer., vol. 87, pp.
2592–2605, June 1990.

[49] Boys Town National Research Hospital, Communica-
tion Engineering Laboratory. [Online] Available WWW:
http://www.btnrh.boystown.org/cel/waves.htm; Department of
Physiology at the University of Wisconsin–Madison. [Online].
Available WWW: http://www.neurophys.wisc.edu/animations/;
Scuola Internazionale Superiore di Studi Avanzati/International
School for Advanced Studies (SISSA/ISAS). [Online]. Available
WWW: http:// www.sissa.it/bp/Cochlea/twlo.htm; and Ear Lab at
Boston University. [Online]. Available: http://earlab.bu.edu/physi-
ology/ mechanics.html.

[50] B. C. J. Moore, “Masking in the human auditory system,” inCol-
lected Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and
C. Grewin, Eds., 1996, pp. 9–19.

[51] B. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes
from notched-noise data,”Hearing Res., vol. 47, pp. 103–138, 1990.

[52] B. C. J. Moore and B. Glasberg, “Suggested formulae for calculating
auditory-filter bandwidths and excitation patterns,”J. Acoust. Soc.
Amer., vol. 74, pp. 750–753, 1983.

[53] G. Gässler, “Uber die hörschwelle für schallereignisse mit ver-
schieden breitem frequenzspektrum,”Acustica, vol. 4, pp. 408–414,
1954.

[54] J. L. Hall, “Auditory psychophysics for coding applications,” inThe
Digital Signal Processing Handbook, V. Madisetti and D. Williams,
Eds. Boca Raton, FL: CRC Press, 1998, pp. 39.1–39.25.

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 505



[55] H. Fletcher and W. Munson, “Relation between loudness and
masking,”J. Acoust. Soc. Amer., vol. 9, pp. 1–10, 1937.

[56] J. Egan and H. Hake, “On the masking pattern of a simple auditory
stimulus,”J. Acoust. Soc. Amer., vol. 22, pp. 622–630, 1950.

[57] G. Miller, “Sensitivity to changes in the intensity of white noise and
its relation to masking and loudness,”J. Acoust. Soc. Amer., vol. 19,
pp. 609–619, 1947.

[58] J. L. Hall, “Asymmetry of masking revisited: Generalization of
masker and probe bandwidth,”J. Acoust. Soc. Amer., vol. 101, pp.
1023–1033, Feb. 1997.

[59] N. Jayant, J. D. Johnston, and R. Safranek, “Signal compression
based on models of human perception,”Proc. IEEE, vol. 81, pp.
1385–1422, Oct. 1993.

[60] W. Jesteadt, S. Bacon, and J. Lehman, “Forward masking as a func-
tion of frequency, masker level, and signal delay,”J. Acoust. Soc.
Amer., vol. 71, pp. 950–962, 1982.

[61] B. C. J. Moore, “Psychophysical tuning curves measured in simul-
taneous and forward masking,”J. Acoust. Soc. Amer., vol. 63, pp.
524–532, 1978.

[62] K. Brandenburg, “Perceptual coding of high quality digital audio,” in
Applications of Digital Signal Processing to Audio and Acoustics, M.
Kahrs and K. Brandenburg, Eds. Boston, MA: Kluwer Academic,
1998.

[63] P. Papamichalis, “MPEG audio compression: Algorithms and imple-
mentation,” inProc. DSP 95 Int. Conf. DSP, June 1995, pp. 72–77.

[64] N. Jayant and P. Noll,Digital Coding of Waveforms Principles and
Applications to Speech and Video. Englewood Cliffs, NJ: Prentice-
Hall, 1984.

[65] P. P. Vaidyanathan, “Quadrature mirror filter banks,M -band
extensions, and perfect-reconstruction techniques,”IEEE Acoust.,
Speech, Signal Processing Mag., pp. 4–20, July 1987.

[66] , “Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial,”Proc. IEEE, vol. 78, pp. 56–93, Jan. 1990.

[67] R. E. Crochiere and L. R. Rabiner,Multirate Digital Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[68] P. P. Vaidyanathan, Multirate Systems and Filter
Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[69] A. Akansu and M. J. T. Smith, Eds.,Subband and Wavelet Trans-
forms, Design and Applications. Norwell, MA: Kluwer Academic,
1996.

[70] H. S. Malvar, Signal Processing with Lapped Trans-
forms. Norwood, MA: Artech House, 1991.

[71] M. Vetterli and C. Herley, “Wavelets and filter banks,”IEEE Trans.
Signal Processing, vol. 40, pp. 2207–2232, Sept. 1992.

[72] O. Rioul and M. Vetterli, “Wavelets and signal processing,”IEEE
Signal Processing Mag., pp. 14–38, Oct. 1991.

[73] A. Akansu and R. Haddad,Multiresolution Signal Decomposition:
Transforms, Subbands, Wavelets. San Diego, CA: Academic,
1992.

[74] G. Strang and T. Nguyen,Wavelets and Filter banks. Wellesley,
MA: Wellesley-Cambridge, 1996.

[75] J. Johnston, S. Quackenbush, G. Davidson, K. Brandenburg, and
J. Herre, “MPEG audio coding,” inWavelet, Subband, and Block
Transforms in Communications and Multimedia, A. Akansu and M.
Medley, Eds. Boston, MA: Kluwer Academic, 1999, ch. 7.

[76] K. Brandenburg, E. Eberlein, J. Herre, and B. Edler, “Comparison
of filter banks for high quality audio coding,” inProc. IEEE ISCAS,
1992, pp. 1336–1339.

[77] H. J. Nussbaumer, “Pseudo QMF filter bank,”IBM Tech. Disclosure
Bull., vol. 24, pp. 3081–3087, Nov. 1981.

[78] J. H. Rothweiler, “Polyphase quadrature filters: A new subband
coding technique,” inProc. Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP-83), May 1983, pp. 1280–1283.

[79] P. L. Chu, “Quadrature mirror filter design for an arbitrary number
of equal bandwidth channels,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP–33, pp. 203–218, Feb. 1985.

[80] J. Masson and Z. Picel, “Flexible design of computationally effi-
cient nearly perfect QMF filter banks,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-85), Mar. 1985, pp.
14.7.1–14.7.4.

[81] R. Cox, “The design of uniformly and nonuniformly spaced pseudo
QMF,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP–34, pp. 1090–1096, Oct. 1986.

[82] D. Pan, “Digital audio compression,”Digital Tech. J., vol. 5, no. 2,
pp. 28–40, 1993.

[83] H. Malvar, “Modulated QMF filter banks with perfect reconstruc-
tion,” Electron. Lett., vol. 26, pp. 906–907, June 1990.

[84] T. Ramstad, “Cosine modulated analysis–synthesis filter bank with
critical sampling and perfect reconstruction,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-91), May 1991,
pp. 1789–1792.

[85] R. Koilpillai and P. P. Vaidyanathan, “New results on cosine-modu-
lated FIR filter banks satisfying perfect reconstruction,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-91), May
1991, pp. 1793–1796.

[86] , “Cosine-modulated FIR filter banks satisfying perfect recon-
struction,”IEEE Trans. Signal Processing, vol. SP–40, pp. 770–783,
Apr. 1992.

[87] J. Princen and A. Bradley, “Analysis/synthesis filter bank design
based on time domain aliasing cancellation,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 1153–1161, Oct.
1986.

[88] H. Malvar, “Lapped transforms for efficient transform/subband
coding,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38,
pp. 969–978, June 1990.

[89] S. Cheung and J. Lim, “Incorporation of biorthogonality into
lapped transforms for audio compression,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-95), May 1995,
pp. 3079–3082.

[90] J. Princen, J. Johnson, and A. Bradley, “Subband/transform coding
using filter bank designs based on time domain aliasing cancella-
tion,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-87), May 1987, pp. 50.1.1–50.1.4.

[91] G. Smart and A. Bradley, “Filter bank design based on time-domain
aliasing cancellation with nonidentical windows,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-94), May 1995,
pp. III-185–III-188.

[92] B. Jawerth and W. Sweldens, “Biorthogonal smooth local trigono-
metric bases,”J. Fourier Anal. Appl., vol. 2, no. 2, pp. 109–133,
1995.

[93] G. Matviyenko, “Optimized local trigonometric bases,”Appl.
Comput. Harmonic Anal., vol. 3, no. 4, pp. 301–323, 1996.

[94] A. Ferreira, “Convolutional effects in transform coding with TDAC:
An optimal window,”IEEE Trans. Speech Audio Processing, vol. 4,
pp. 104–114, Mar. 1996.

[95] H. Malvar, “Biorthogonal and nonuniform lapped transforms for
transform coding with reduced blocking and ringing artifacts,”
IEEE Trans. Signal Processing, vol. 46, pp. 1043–1053, Apr. 1998.

[96] C. Herley, “Boundary filters for finite-length signals and
time-varying filter banks,” IEEE Trans. Circuits Syst. II, vol.
42, pp. 102–114, Feb. 1995.

[97] C. Herley, J. Kovacevic, and K. Ramchandran, “Tilings of the
time-frequency plane: Construction of arbitrary orthogonal bases
and fast tiling algorithms,”IEEE Trans. Signal Processing, vol. 41,
pp. 3341–3359, 1993.

[98] I. Sodagar, K. Nayebi, and T. Barnwell, “Time-varying filter
banks and wavelets,”IEEE Trans. Signal Processing, vol. 42, pp.
2983–2996, Nov. 1994.

[99] R. de Queiroz, “Time-varying lapped transforms and wavelet
packets,”IEEE Trans. Signal Processing, vol. 41, pp. 3293–3305,
1993.

[100] P. Duhamel, Y. Mahieux, and J. Petit, “A fast algorithm for the im-
plementation of filter banks based on time domain aliasing cancel-
lation,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-91), May 1991, pp. 2209–2212.

[101] D. Sevic and M. Popovic, “A new efficient implementation of the
oddly-stacked princen-bradley filter bank,”IEEE Signal Processing
Lett., vol. 1, pp. 166–168, Nov. 1994.

[102] C.-M. Liu and W.-C. Lee, “A unified fast algorithm for cosine mod-
ulated filter banks in current audio coding standards,” inProc. 104th
Conv. Aud. Eng. Soc., 1998, preprint 4729.

[103] H.-C. Chiang and J.-C. Liu, “Regressive implementations for the for-
ward and inverse MDCT in MPEG audio coding,”IEEE Signal Pro-
cessing Lett., vol. 3, pp. 116–118, Apr. 1996.

[104] C. Jakob and A. Bradley, “Minimizing the effects of subband quanti-
zation of the time domain aliasing cancellation filter bank,” inProc.
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP-96),
May 1996, pp. 1033–1036.

[105] B. Edler, “Codierung von audiosignalen mit überlappender transfor-
mation und adaptiven fensterfunktionen,”Frequenz, pp. 252–256,
1989.

[106] S. Shlien, “The modulated lapped transform, its time-varying forms,
and its applications to audio coding standards,”IEEE Trans. Speech
Audio Processing, vol. 5, pp. 359–366, July 1997.

506 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000



[107] T. Vaupel, “Ein beitrag zur transformationscodierung von audiosig-
nalen unter verwendung der methode der ‘time domain aliasing can-
cellation (TDAC)’ und einer signalkompandierung in zeitbereich,”
Ph.D. dissertation, Univ. Duisburg, Duisburg, Germany, Apr. 1991.

[108] M. Link, “An attack processing of audio signals for optimizing the
temporal characteristics of a low bit-rate audio coding system,” in
Proc. 95th Conv. Aud. Eng. Soc., 1993, preprint 3696.

[109] K. Akagiri, “Technical description of Sony preprocessing,” SO/IEC
JTC1/SC29/WG11 MPEGI, Input Doc., 1994.

[110] J. Herre and J. Johnston, “Enhancing the performance of perceptual
audio coders by using temporal noise shaping (TNS),” inProc. 101st
Conv. Aud. Eng. Soc., 1996, preprint 4384.

[111] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri,
H. Fuchs, and M. Dietz, “MPEG-2 advanced audio coding,” inProc.
101st Conv. Aud. Eng. Soc., 1996, preprint.

[112] ISO/IEC, JTC1/SC29/WG11 MPEG, “Generic coding of moving
pictures and associated audio—Audio (non backward compatible
coding, NBC),” JTC1/SC29/WG11 MPEG, Committee Draft
13 818-7 1996 ("MPEG-2 NBC/AAC").

[113] D. Krahe, “New source coding method for high quality digital audio
signals,”NTG Fachtagung Hoerrundfunk, pp. S.371–S.381, 1985.

[114] , “Grundlagen eines verfahrens zur dataenreduktion bei
qualitativ hochwertigen, digitalen audiosignalen auf basis einer
adaptiven transformationscodierung unter berucksightigung psy-
choakustischer phanomene,” Ph.D. dissertation, Unive. Duisburg,
Duisburg, Germany, 1988.

[115] K. Brandenburg, “High quality sound coding at 2.5 bits/sample,” in
Proc. 84th Conv. Aud. Eng. Soc., Mar. 1988, preprint 2582.

[116] , “OCF: Coding high quality audio with data rates of 64
kbit/sec,” in Proc. 85th Conv. Aud. Eng. Soc., Mar. 1988, preprint
2723.

[117] J. Johnston, “Perceptual transform coding of wideband stereo sig-
nals,” inProc. ICASSP-89, May 1989, pp. 1993–1996.

[118] Y. Mahieux, Y. Mahieux, J. Petit, and A. Charbonnier, “Transform
coding of audio signals using correlation between successive trans-
form blocks,” inProc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP-89), May 1989, pp. 2021–2024.

[119] Y. Mahieux and J. Petit, “Transform coding of audio signals at 64
kbits/sec,” inProc. Globecom’90, Nov. 1990, pp. 405.2.1–405.2.5.

[120] A. Sugiyama, F. Hazu, M. Iwadare, and T. Nishitani, “Adaptive
transform coding with an adaptive block size (ATC-ABS),” inProc.
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP-90),
May 1990, pp. 1093–1096.

[121] M. Paraskevas and J. Mourjopoulos, “A differential perceptual
audio coding method with reduced bitrate requirements,”IEEE
Trans. Speech Audio Processing, pp. 490–503, Nov. 1995.

[122] D. Schulz, “Improving audio codecs by noise substitution,”J. Audio
Eng. Soc., pp. 593–598, July/Aug 1996.

[123] W. Chan and A. Gersho, “Constrained-storage vector quantization
in high fidelity audio transform coding,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-91), May 1991, pp.
3597–3600.

[124] , “Constrained-storage quantization of multiple vector sources
by codebook sharing,”IEEE Trans. Commun., pp. 11–13, Jan. 1991.

[125] N. Iwakami, T. Moriya, and S. Miki, “High-quality audio-coding at
less than 64 kbit/s by using transform-domain weighted interleave
vector quantization (TWINVQ),” inProc. ICASSP-95, May 1995,
pp. 3095–3098.

[126] N. Iwakami and T. Moriya, “Transform domain weighted interleave
vector quantization (TwinVQ),” inProc. 101st Conv. Aud. Eng. Soc.,
Nov. 1996, preprint 4377.

[127] ISO/IEC, JTC1/SC29/WG11 (MPEG) document N2011, “Results of
AAC and TwinVQ tool comparative tests,”, San Jose, CA, 1998.

[128] T. Moriya, N. Iwakami, K. Ikeda, and S. Miki, “Extension and
complexity reduction of TWINVQ audio coder,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-96), May 1996,
pp. 1029–1032.

[129] K. Ikeda, T. Moriya, and N. Iwakami, “Error protected TwinVQ
audio coding at less than 64 kbit/s,” inProc. IEEE Speech Coding
Workshop, 1995, pp. 33–34.

[130] A. Charbonnier and J. P. Petit, “Sub-band ADPCM coding for high
quality audio signals,” inProc. Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP-88), May 1988, pp. 2540–2543.

[131] P. Voros, “High-quality sound coding within 2x64 kbit/s using
instantaneous dynamic bit-allocation,” inProc. Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP-88), May 1988, pp.
2536–2539.

[132] D.-H. Teh, A.-P. Tan, and S.-N. Koh, “Subband coding of high-fi-
delity quality audio signals at 128 kb/s,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-92), May 1990, pp.
II-197–II-200.

[133] G. Stoll, M. Link, and G. Theile, “Masking-pattern adapted subband
coding: Use of the dynamic bit-rate margin,” inProc. 84th Conv.
Aud. Eng. Soc., Mar. 1988, preprint 2585.

[134] R. N. J. Veldhuis, “Subband coding of digital audio signals without
loss of quality,” inProc. Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP-89), May 1989, pp. 2009–2012.

[135] D. Wiese and G. Stoll, “Bitrate reduction of high quality audio sig-
nals by modeling the ear’s masking thresholds,” inProc. 89th Conv.
Aud. Eng. Soc., Sept. 1990, preprint 2970.

[136] “ISO MPEG/audio test report,” Swedish Broadcasting Corp., Stock-
holm, Sweden, July 1990.

[137] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1992.

[138] S. Boland and M. Deriche, “New results in low bitrate audio coding
using a combined harmonic-wavelet representation,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-97), Apr.
1997, pp. 351–354.

[139] A. Pena, C. Serantes, and N. Prelcic, “ARCO (Adaptive Resolution
COdec): A hybrid approach to perceptual audio coding,” inProc.
100th Conv. Aud. Eng. Soc., May 1996, preprint 4178.

[140] N. Gonzalez-Prelcic, S. Gonzalez, and A. Pena, “Considerations on
the performance of filter design methods for wavelet packet audio
decomposition,” inProc. 100th Conv. Aud. Eng. Soc., May 1996,
preprint 4235.

[141] N. Prelcic and A. Pena, “An adaptive tree search algorithm with ap-
plication to multiresolution based perceptive audio coding,” inProc.
IEEE Int. Symp. Time-Frequency and Time-Scale Analysis, 1996, pp.
117–120.

[142] A. Pena, C. Serantes, and N. Gonzalez-Prelcic, “New improvements
in ARCO (Adaptive Resolution COdec),” inProc. 102nd Conv. Aud.
Eng. Soc., Mar. 1997, preprint 4419.

[143] M. Black and M. Zeytinoglu, “Computationally efficient wavelet
packet coding of wideband stereo audio signals,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-95), May 1995,
pp. 3075–3078.

[144] P. Kudumakis and M. Sandler, “On the performance of wavelets for
low bit rate coding of audio signals,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-95), May 1995, pp.
3087–3090.

[145] , “Wavelets, regularity, complexity, and MPEG-audio,” inProc.
99th Conv. Aud. Eng. Soc., Oct. 1995, preprint 4048.

[146] , “On the compression obtainable with four-tap wavelets,”
IEEE Signal Processing Lett., pp. 231–233, Aug. 1996.

[147] S. Boland and M. Deriche, “High quality audio coding using multi-
pulse LPC and wavelet decomposition,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-95), May 1995, pp.
3067–3069.

[148] , “Audio coding using the wavelet packet transform and a
combined scalar-vector quantization,” inProc. Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP-96), May 1996, pp.
1041–1044.

[149] W. Dobson, J. Yang, K. Smart, and F. Guo, “High quality low com-
plexity scalable wavelet audio coding,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-97), Apr. 1997, pp.
327–330.

[150] Z. Lu and W. Pearlman, “An efficient, low-complexity audio coder
delivering multiple levels of quality for interactive applications,”
in Proc. IEEE Signal Processing Soc. Workshop Multimedia Signal
Processing, Dec. 1998.

[151] R. Coifman and M. Wickerhauser, “Entropy based algorithms for
best basis selection,”IEEE Trans. Inform. Theory, vol. 38, pp.
712–718, Mar. 1992.

[152] M. Wickerhauser,Adapted Wavelet Analysis from Theory to Soft-
ware. Wellesley, MA: A. K. Peters, 1994.

[153] C. E. Shannon, “A mathematical theory of communication,”Bell
Sys. Tech. J., vol. 27, pp. 379–423–623–656, 1948.

[154] R. Hedges, “Hybrid wavelet packet analysis,” inProc. 31st Asilomar
Conf. on Sig., Sys., and Comp., Oct. 1997, pp. 1254–1258.

[155] R. Hedges and D. Cochran, “Hybrid wavelet packet analysis,” in
Proc. IEEE SP Int. Symp. Time-Frequency and Time-Scale Analysis,
Oct. 1998, pp. 221–224.

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 507



[156] , “Hybrid wavelet packet analysis: A top down approach,” in
Proc. 32nd Asilomar Conf. Sig., Sys., and Comp., vol. 2, Nov. 1998,
pp. 1381–1385.

[157] D. Sinha and A. Tewfik, “Low bit rate transparent audio compression
using a dynamic dictionary and optimized wavelets,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-93), May
1993, pp. I-197–I-200.

[158] , “Low bit rate transparent audio compression using an adapted
wavelets,”IEEE Trans. Signal Processing, vol. 41, pp. 3463–3479,
Dec. 1993.

[159] I. Daubechies, “Orthonormal bases of compactly supported
wavelets,”Commun. Pure Appl. Math., pp. 909–996, Nov. 1988.

[160] A. Tewfik and M. Ali, “Enhanced wavelet based audio coder,” in
Conf. Rec. 27th Asilomar Conf. Sig. Sys., and Comp., Nov. 1993, pp.
896–900.

[161] P. Srinivasan and L. Jamieson, “High quality audio compression
using an adaptive wavelet packet decomposition and psychoacoustic
modeling,”IEEE Trans. Signal Processing, vol. 46, pp. 1085–1093,
Apr. 1998.

[162] P. Srinivasan, “Speech and wideband audio compression using
filter banks and wavelets,” Ph. D. dissertation, Purdue Univ., West
Lafayette, IN, May 1997.

[163] J. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462,
Dec. 1993.

[164] M. Erne, G. Moschytz, and C. Faller, “Best wavelet-packet bases for
audio coding using perceptual and rate-distortion criteria,” inProc.
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP-99),
Mar. 1999, pp. 909–912.

[165] M. Erne and G. Moschytz, “Perceptual and near-lossless audio
coding based on a signal-adaptive wavelet filterbank,” inProc.
106th Conv. Aud. Eng. Soc., May 1999, preprint 4934.

[166] P. Philippe, M. Lever, J.-B. Rault, F. Moreau de Saint Martin, and J.
Soumagne, “A relevant criterion for the design of wavelet filters in
high-quality audio coding,” inProc. 98th Conv. Aud. Eng. Soc., Feb.
1995, preprint 3948.

[167] P. Philippe, F. Moreau de Saint-Martin, and L. Mainard, “On the
choice of wavelet filters for audio compression,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP-95), May 1995,
pp. 1045–1048.

[168] O. Rioul and P. Duhamel, “A Remez exchange algorithm for or-
thonormal wavelets,”IEEE Trans. Circuits Syst. II, pp. 550–560,
Aug. 1994.

[169] P. Onno and C. Guillemot, “Tradeoffs in the design of wavelet filters
for image compression,” inProc. VCIP, Nov. 1993, pp. 1536–1547.

[170] F. Moreau de Saint-Martin, A. Cohen, and P. Sioha, “A measure
of near orthogonality of PR biorthogonal filter banks,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-95), May
1995, pp. 1480–1483.

[171] P. Philippe, F. Moreau de Saint-Martin, M. Lever, and J. Soumagne,
“Optimal wavelet packets for low-delay audio coding,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-96), May
1996, pp. 550–553.

[172] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, “Optimization by sim-
ulated annealing,”Science, pp. 671–680, May 1983.

[173] M. J. T. Smith and T. Barnwell, “Exact reconstruction techniques
for tree-structered subband coders,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-34, pp. 434–441, June 1986.

[174] H. Caglaret al., “Statistically optimized PR-QMF design,” inProc.
SPIE Vis. Commun. Image Proc., Nov. 1991, pp. 86–94.

[175] P. Philippe, F. Moreau de Saint-Martin, and M. Lever, “Wavelet
packet filterbanks for low time delay audio coding,”IEEE Trans.
Speech Audio Processing, vol. 7, pp. 310–322, May 1999.

[176] P. P. Vaidyanathan and T. Chen, “Statistically optimal synthesis
banks for subband coders,” inProc. 28th Asilomar Conf. Sig., Sys.,
and Comp., Nov. 1994.

[177] B. Chen, C.-W. Lin, and Y.-L. Chen, “Optimal signal reconstruction
in noisy filterbanks: Multirate kalman synthesis filtering approach,”
IEEE Trans. Signal Processing, vol. 43, pp. 2496–2504, Nov. 1995.

[178] J. Kovacevic, “Subband coding systems incorporating quantizer
models,”IEEE Trans. Image Process., pp. 543–553, May 1995.

[179] R. Haddad and K. Park, “Modeling, analysis, and optimum design
of quantizedM -band filterbanks,”IEEE Trans. Signal Processing,
vol. 43, pp. 2540–2549, Nov. 1995.

[180] A. Delopoulos and S. Kollias, “Optimal filterbanks for signal recon-
struction from noisy subband components,”IEEE Trans. Signal Pro-
cessing, vol. 44, pp. 212–224, Feb. 1996.

[181] K. Gosse, F. Moreau de Saint-Martin, and P. Duhamel, “Filterbank
design for minimum distortion in the presence of subband quantiza-
tion,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-96), May 1996, pp. 1491–1494.

[182] K. Gosse and P. Duhamel, “Perfect reconstruction versus MMSE
filterbanks in source coding,”IEEE Trans. Signal Processing, vol.
45, pp. 2188–2202, Sept. 1997.

[183] K. Gosse, O. Pothier, and P. Duhamel, “Optimizing the synthesis
filter bank in audio coding for minimum distortion using a frequency
weighted psychoacoustic criterion,” inProc. IEEE ASSP Workshop
App. Signal Processing to Audio and Acoustics, 1995, pp. 191–194.

[184] K. Gosse, F. Moreau de Saint-Martin, X. Durot, P. Duhamel,
and J.-B.. Rault, “Subband audio coding with synthesis filters
minimizing a perceptual distortion,” inProc. Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP-97), May 1997, pp.
347–50.

[185] X. Durot and J.-B. Rault, “A new noise injection model for audio
compression algorithms,” inProc. 101st Conv. Aud. Eng. Soc., Nov.
1996, preprint 4374.

[186] C. Colomes, M. Lever, and J. Rault, “A perceptual model applied to
audio bit-rate reduction,”J. Aud. Eng. Soc., pp. 233–240, Apr. 1995.

[187] K. Hamdy, M. Ali, and A. Tewfik, “Low bit rate high quality audio
coding with combined harmonic and wavelet representations,”
in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-96), May 1996, pp. 1045–1048.

[188] D. Thomson, “Spectrum estimation and harmonic analysis,”Proc.
IEEE, vol. 70, pp. 1055–1096, Sept. 1982.

[189] R. McAulay and T. Quatieri, “Speech analysis synthesis based on
a sinusoidal representation,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-34, pp. 744–754, Aug. 1986.

[190] M. Ali, “Adaptive signal representation with application in audio
coding,” Ph.D. dissertation, Univ. of Minnesota, Mar. 1996.

[191] O. Alkin and H. Calgar, “Design of efficientM -band coders with
linear phase and perfect-reconstruction properties,”IEEE Trans.
Signal Processing, vol. 43, pp. 1579–1589, July 1995.

[192] “SQAM-sound quality assessment material: Recordings for subjec-
tive tests,” EBU, Tech. Doc. 3253 (includes SQAM Compact Disc),
1988.

[193] A. Pena, N. Gonzalez-Prelcic, and C. Serantes, “A flexible tiling of
the time axis for adaptive wavelet packet decompositions,” inProc.
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP-97),
Apr. 1997, pp. 2137–2140.

[194] E. Terhardtet al., “Algorithm for extraction of pitch and pitch
salience from complex tonal signals,”J. Acoust. Soc. Amer., vol.
71, pp. 679–688, Mar. 1982.

[195] C. Serantes, A. Pena, and N. Gonzalez-Prelcic, “A fast noise-scaling
algorithm for uniform quantization in audio coding schemes,” in
Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-97), Apr. 1997, pp. 339–342.

[196] A. Pena, “A suggested auditory information environment to ease the
detection and minimization of subjective annoyance in perceptive-
based systems,” inProc. 98th Conv. Aud. Eng. Soc., Paris, France,
1995, preprint 4019.

[197] A. Casal, C. Serantes, N. Gonzalez-Prelcic, and A. Pena, “Testing
a flexible time-frequency mapping for high frequencies in TARCO
(Tonal Adaptive Resolution COdec),” inProc. 104th Conv. Aud. Eng.
Soc., Amsterdam, The Netherlands, May 1998, preprint 4676.

[198] J. Princen, “The design of nonuniform modulated filterbanks,” in
Proc. IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis,
Oct. 1994, pp. 112–115.

[199] P. Monta and S. Cheung, “Low rate audio coder with hierarchical
filterbanks,” inProc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP-94), May 1994, pp. II-209–II-212.

[200] L. Mainard and M. Lever, “A bi-dimensional coding scheme applied
to audio bit rate reduction,” inProc. Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP-96), May 1994, pp. 1017–1020.

[201] J. Princen and J. Johnston, “Audio coding with signal adaptive filter-
banks,” inProc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-95), May 1995, pp. 3071–3074.

[202] M. Purat and P. Noll, “A new orthonormal wavelet packet decompo-
sition for audio coding using frequency-varying modulated lapped
transforms,” inIEEE ASSP Workshop Applic. of Signal Processing
to Aud. and Acoustics, Oct. 1995, Session 8.

[203] C. Creusere and S. Mitra, “Efficient audio coding using perfect re-
construction noncausal IIR filter banks,”IEEE Trans. Speech Audio
Processing, pp. 115–123, Mar. 1996.

508 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000



[204] P. Hedelin, “A tone-oriented voice-excited vocoder,” inProc. IEEE
Int. Conf. Acoustics Speech, and Signal Processing (ICASSP-81),
Mar. 1981, pp. 205–208.

[205] L. Almeida, “Nonstationary spectral modeling of voiced speech,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp.
374–390, June 1983.

[206] S. Levine and J. Smith, “A sines+transients+noise audio represen-
tation for data compression and time/pitch scale modifications,” in
Proc. 105th Conv. Aud. Eng. Soc., Sept. 1998, preprint 4781.

[207] T. Verma and T. Meng, “Sinusoidal modeling using frame-based
perceptually weighted matching pursuits,” inProc. IEEE Int. Conf.
Acoustics Speech, and Signal Processing (ICASSP-99), Mar. 1999,
pp. 981–984.

[208] S. Levine and J. O. Smith III, “A switched parametric and transform
audio coder,” inProc. IEEE Int. Conf. Acoustics Speech, and Signal
Processing (ICASSP-99), Mar. 1999, pp. 985–988.

[209] S. Levine, “Audio representations for data compression and com-
pressed domain processing,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, Dec. 1998.

[210] B. Edler, “Technical description of the MPEG-4 audio coding
proposal from University of Hannover and Deutsche Bundespost
Telekom,” ISO/IEC, JTC1/SC29/WG11 MPEG95/MO414, Oct.
1995.

[211] B. Edler and H. Purnhagen, “Technical description of the MPEG-4
audio coding proposal from University of Hannover and Deutschet
Telekom AG,” ISO/IEC, JTC1/SC29/WG11 MPEG96/MO632, Jan.
1996.

[212] E. B. George and M. J. T. Smith, “Analysis-by-synthesis/overlap-add
sinusoidal modeling applied to the analysis and synthesis of musical
tones,”J. Aud. Eng. Soc., pp. 497–516, June 1992.

[213] , “Speech analysis/synthesis and modification using and
analysis-by-synthesis/overlap-add sinusoidal model,”IEEE Trans.
Speech Audio Processing, pp. 389–406, Sept. 1997.

[214] X. Serra and J. O. Smith III, “Spectral modeling and synthesis: A
sound analysis/synthesis system based on a deterministic plus sto-
chastic decomposition,”Comput. Mus. J., pp. 12–24, Winter 1990.

[215] F. Baumgarte, C. Ferekidis, and H. Fuchs, “A nonlinear psychoa-
coustic model applied to the ISO MPEG layer 3 coder,” inProc.
99th Conv. Aud. Eng. Soc., New York, Oct. 1995, preprint 4087.

[216] B. Edler , H. Purnhagen, and C. Ferekidis, “ASAC—Analysis/syn-
thesis audio codec for very low bit rates,” inProc. 100th Conv. Aud.
Eng. Soc., May 1996, preprint 4179.

[217] ISO/IEC, JTC1/SC29/WG11, “MPEG-4 audio test results (MOS
tests),” ISO/IEC, Munich, Germany, JTC1/SC29/WG11/N1144,
Jan. 1996.

[218] ISO/IEC, JTC1/SC29/WG11, “Report of theAd HocGroup on the
evaluation of new audio submissions to MPEG-4,” ISO/IEC, Mu-
nich, Germany, JTC1/SC29/WG11/MPEG96/M0680, Jan. 1996.

[219] H. Purnhagen, B. Edler, and C. Ferekidis, “Object-based anal-
ysis/synthesis audio coder for very low-bit rates,” inProc. 104th
Conv. Aud. Eng. Soc., May 1998, preprint 4747.

[220] H. Purnhagen, “Proposal of a core experiment for extended ‘har-
monic and individual lines plus noise’ tools for the parametric
audio coder core,” ISO/IEC, JTC1/SC29/WG11 MPEG97/2480,
July 1997.

[221] H. Purnhagen and B. Edler, “Check phase results of core experiment
on extended ‘harmonic and individual lines plus noise’,” ISO/IEC,
JTC1/ SC29/WG11 MPEG97/2795, Oct. 1997.

[222] ISO/IEC, JTC1/SC29/WG11, “MPEG-4 audio committee draft
14 496-3,” ISO/IEC, Available WWW: http://www.tnt.uni-han-
nover.de/project/mpeg/audio/documents, Oct. 1997.

[223] B. Feiten , R. Schwalbe, and F. Feige, “Dynamically scalable audio
internet transmission,” inProc. 104th Conv. Aud. Eng. Soc., May
1998, preprint 4686.

[224] J. Chowing, “The synthesis of complex audio spectra by means of
frequency modulation,”J. Aud. Eng. Soc., pp. 526–529, Sept. 1973.

[225] B. Winduratna, “FM analysis/synthesis based audio coding,” in
Proc. 104th Conv. Aud. Eng. Soc., May 1998, preprint 4746.

[226] A. J. S. Ferreira, “Perceptual coding of harmonic signals,” inProc.
100th Conv. Aud. Eng. Soc., May 1996, preprint 4746.

[227] B. Edler and L. Contin, “MPEG-4 audio test results (MOS test),”,
ISO/IEC JTC1/SC29/WG11 N1144, Jan. 1996.

[228] B. Edler and H. Purnhagen, “Concepts for hybrid audio coding
schemes based on parametric techniques,” inProc. 105th Conv.
Aud. Eng. Soc., 1998, preprint 4808.

[229] J. Saunders, “Real time discrimination of broadcast speech/music,”
in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP-96), May 1996, pp. 993–996.

[230] E. Scheirer and M. Slaney, “Construction and evaluation of a robust
multifeature speech/music discriminator,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-98), May 1998.

[231] B. Edler, “Very low bit rate audio coding development,” inProc.
14th Aud. Eng. Soc. Int. Conf., June 1997.

[232] A. S. Bregman,Auditory Scene Analysis. Cambridge, MA: MIT
Press, 1990.

[233] D. P. W. Ellis, “Prediction-driven computational auditory scene
analysis,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, June 1996.

[234] A. Spanias, “Speech coding: A tutorial review,”Proc. IEEE, vol. 82,
pp. 1541–1582, Oct. 1994.

[235] S. Singhal, “High quality audio coding using multipulse LPC,” in
Proc. ICASSP-90, May 1990, pp. 1101–1104.

[236] X. Lin , R. Salami, and R. Steele, “High quality audio coding using
analysis-by-synthesis technique,” inProc. ICASSP-91, May 1991,
pp. 3617–3620.

[237] S. Boland and M. Deriche, “Hybrid LPC And discrete wavelet trans-
form audio coding with a novel bit allocation algorithm,” inProc.
ICASSP-98, May 1998, pp. 3657–3660.

[238] W. Chang and C. Want, “A masking-threshold-adapted weighting
filter for excitation search,”IEEE Trans. Speech Audio Processing,
vol. 4, pp. 124–132, Mar. 1996.

[239] W.-W Chang , D.-Y. Wang , and L.-W. Wang , “Audio coding
using sinusoidal excitation representation,”Proc. ICASSP-97, pp.
311–314, Apr. 1997.

[240] A. Oppenheim, D. Johnson, and K. Steiglitz, “Computation of
spectra with unequal resolution using the fast Fourier transform,”
Proc. IEEE, vol. 59, pp. 299–301, Feb. 1971.

[241] A. Oppenheim and D. Johnson, “Discrete representation of signals,”
Proc. IEEE, vol. 60, pp. 681–691, June 1972.

[242] H. Strube, “Linear prediction on a warped frequency scale,”J.
Acoust. Soc. Amer., vol. 68, no. 4, pp. 1071–1076, Oct. 1980.

[243] E. Kruger and H. Strube, “Linear prediction on a warped frequency
scale,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp.
1529–1531, Sept. 1988.

[244] J. O. Smith and J. Abel, “The bark bilinear transform,” inProc. IEEE
Workshop App. Signal Processing to Audio and Electroacoustics,
Oct. 1995, Available WWW: http://www-ccrma.stanford.edu/~jos/.

[245] A. Harma, U. Laine, and M. Karjalainen, “Warped linear predic-
tion (WLP) in audio coding,” inProc. NORSIG’96, Sept. 1996, pp.
367–370.

[246] , “An experimental audio codec based on warped linear predic-
tion of complex valued signals,” inProc. ICASSP-97, Apr. 1997, pp.
323–326.

[247] , “WLPAC—A perceptual audio codec in a nutshell,” inProc.
102nd Audio Eng. Soc. Conv., Munich, Germany, 1997, preprint
4420.

[248] A. Harma , M. Vaalgamaa, and U. Laine, “A warped linear predictive
stereo codec using temporal noise shaping,” inProc. ICASSP-98,
May 1998.

[249] “Information technology—Coding of moving pictures and associ-
ated audio for digital storage media at up to About 1.5 Mbit/s-IS
11 172-3 (audio),” ISO/IEC, JTC1/SC29, 1992.

[250] G. Stoll, “Extension of the ISO/MPEG-audio layer II to
multi-channel coding: The future standard for broadcasting,
telecommunication, and multimedia application,” inProc. 94th
Audio Eng. Soc. Conv., Berlin, Germany, 1993, preprint 3550.

[251] B. Grill, J. Herre, K. Brandenburg, E. Eberlein, J. Koller, and J.
Muller, “Improved MPEG-2 audio multi-channel encoding,” in
Proc. 96th Audio Eng. Soc. Conv., Amsterdam, The Netherlands,
1994, preprint 3865.

[252] “Information technology—Generic coding of moving pictures and
associated audio information-DIS 13 818-3 (audio),” ISO/IEC,
JTC1/SC29, 1994.

[253] W. Th. ten Kate , “Compatibility matrixing of multi-channel bit rate
reduced audio signals,” inProc. 96th Audio Eng. Soc. Conv., Ams-
terdam, The Netherlands, 1994, preprint 3792.

[254] K. Brandenburg and G. Stoll, “ISO-MPEG-1 audio: A generic stan-
dard for coding of high-quality digital audio,”J. Audio Eng. Soc.,
pp. 780–792, Oct. 1994.

[255] S. Shlien, “Guide to MPEG-1 audio standard,”IEEE Trans. Broad-
cast., pp. 206–218, Dec. 1994.

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 509



[256] D. Pan, “A tutorial on MPEG/audio compression,”IEEE Mult. Med.,
pp. 60–74, Summer 1995.

[257] P. Noll, “MPEG digital audio coding,”IEEE Signal Processing
Mag., pp. 59–81, Sept. 1997.

[258] R. Storey, “ATLANTIC: Advanced television at low bitrates
networked transmission over integrated communication systems,”
ACTS Common European Newsletter, Feb. 1997.

[259] N. Gilchrist, “ATLANTIC audio: Preserving technical quality during
low bit rate coding and decoding,” inProc. 104th Audio Eng. Soc.
Conv., Amsterdam, The Netherlands, May 1998, preprint 4694.

[260] P. Lauber and N. Gilchrist, “ATLANTIC audio: Switching layer 3
signals,” inProc. 104th Audio Eng. Soc. Conv., Amsterdam, The
Netherlands, May 1998, preprint 4738.

[261] S. Ritscher and U. Felderhoff, “Cascading of different audio codecs,”
in Proc. 100th Audio Eng. Soc. Conv., Copenhagen, Denmark, May
1996, preprint 4174.

[262] J. Fletcher, “ISO/MPEG layer 2—Optimum re-encoding of
decoded audio using A MOLE signal,” inProc. 104th Audio
Eng. Soc. Conv., Amsterdam, The Netherlands, 1998, see also
http://www.bbc.co.uk/atlantic.

[263] W. R. T. ten Kate, “Maintaining audio quality in cascaded psychoa-
coustic coding,” inProc. 101st Audio Eng. Soc. Conv., Los Angeles,
CA, Nov. 1996, preprint 4387.

[264] “Basic audio quality requirements for digital audio bit rate reduction
systems for broadcast emission and primary distribution,”, ITU-R
Document TG10-2/3-E only, Oct. 1991.

[265] ISO/IEC, 13 818-7, “Information technology—Generic coding of
moving pictures and associated audio—Part 7: Advanced audio
coding,”, 1997.

[266] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H.
Fuchs, and M. Dietz, “ISO/IEC MPEG-2 advanced audio coding,” in
Proc. 101st Audio Eng. Soc. Conv., Los Angeles, CA, 1996, preprint
4382.

[267] , “ISO/IEC MPEG-2 advanced audio coding,”J. Audio Eng.
Soc., pp. 789–813, Oct. 1997.

[268] L. Fielder, M. Bosi, G. Davidson, M. Davis, C. Todd, S. Vernon,
and L. Fielder , “AC-2 and AC-3: Low-complexity transform-based
audio coding,”Collected Papers Digital Audio Bit-Rate Reduction,
pp. 54–72, 1996.

[269] G. Davidson , L. Fielder, and B. Link, “Parametric bit allocation in a
perceptual audio coder,” inProc. 97th Audio Eng. Soc. Conv., Nov.
1994, preprint 3921.

[270] H. Fuchs, “Improving joint stereo audio coding by adaptive inter-
channel prediction,” inProc. 1993 IEEE ASSP Workshop Apps. of
Signal Processing to Aud. and Acoustics, 1993.

[271] , “Improving MPEG audio coding by backward adaptive linear
stereo prediction,” inProc. 99th Conv. Aud. Eng. Soc., Oct. 1995,
preprint 4086.

[272] S. Quackenbush, “Noiseless coding of quantized spectral compo-
nents in MPEG-2 advanced audio coding,” inIEEE ASSP Workshop
Apps. of Signal Processing to Aud. and Acoustics, Mohonk, 1997.

[273] J. Johnston, J. Herre, M. Davis, and U. Gbur, “MPEG-2 NBC
audio–stereo and multichannel coding methods,” inProc. 101st
Audio Eng. Soc. Conv., Los Angeles, CA, 1996, preprint 4383.

[274] ISO/IEC, JTC1/SC29/WG11 N1420, “Overview of the report on
the formal subjective listening tests of MPEG-2 AAC multichannel
audio coding,”, Nov. 1996.

[275] “Methods for subjective assessment of small impairments in audio
systems including multichannel sound systems,”, ITU-R BS 1116,
1994.

[276] D. Kirby and K. Watanabe, “Formal subjective testing of the
MPEG-2 NBC multichannel coding algorithm,” inProc. 102nd
Audio Eng. Soc. Conv., Munich, Germany, 1997, preprint 4418.

[277] S. Quackenbush and Y. Toguri, “Revised report on complexity of
MPEG-2 AAC tools,” ISO/IEC, JTC1/SC29/WG11 N2005, Feb.
1998.

[278] L. Yin , M. Suonio, and M. Vaananen, “A new backward predictor for
MPEG audio coding,” inProc. 103rd Audio Eng. Soc. Conv., New
York, 1997, preprint 4521.

[279] M. Vssnsnen, “Long term predictor for transform domain perceptual
audio coding,” inProc. 107th Audio Eng. Soc. Conv., Sept. 1999,
preprint 5036.

[280] Y. Takamizawa, “An efficient tonal component coding algorithm for
MPEG-2 audio NBC,” inProc. Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP-97), 1997, pp. 331–334.

[281] A. Gersho and R. Gray,Vector Quantization and Signal Compres-
sion. Norwell, MA: Kluwer Academic, 1992.

[282] T. Sreenivas and M. Dietz, “Vector quantization of scale factors in
advanced audio coder (AAC),” inProc. Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP-98), May 1998.

[283] , “Improved AAC performance @ < 64 kb/s using VQ,” inProc.
104th Audio Eng. Soc. Conv., Amsterdam, The Netherlands, 1998,
preprint 4750.

[284] J. Herre and D. Schulz, “Extending the MPEG-4 AAC codec by per-
ceptual noise substitution,” inProc. 104th Audio Eng. Soc. Conv.,
Amsterdam, The Netherlands, 1998, preprint 4720.

[285] L. Contin, B. Edler, D. Meares, and P. Schreiner, “Tests on MPEG-4
audio codec proposals,”Signal Process. Image Commun. J., Oct.
1996.

[286] B. Edler, “Current status of the MPEG-4 audio verification model de-
velopment,” inProc. 101st Conv. Aud. Eng. Soc., Nov. 1996, preprint
4376.

[287] R. Koenen, F. Pereira, and L. Chiariglione, “MPEG-4: Context and
objectives,”Signal Process. Image Commun. J., Oct. 1996.

[288] Overview of the MPEG-4 standard, Available WWW:
http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.html, July
1998.

[289] K. Brandenburg and M. Bosi, “Overview of MPEG audio: Current
and future standards for low-bit-rate audio coding,”J. Audio Eng.
Soc., pp. 4–21, Jan./Feb. 1997.

[290] S. Quackenbush, “Coding of natural audio in MPEG-4,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-98), May
1998.

[291] S. Park, Y. Kim, and Y. Seo, “Multi-layer bit-sliced bit-rate scal-
able audio coding,” inProc. 103rd Conv. Aud. Eng. Soc., Sept. 1997,
preprint 4520.

[292] E. Scheirer, “The MPEG-4 structured audio standard,” inProc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-98), May
1998.

[293] , “The MPEG-4 structured audio standard,” inProc.
ICASSP-98, May 1998.

[294] E. Scheirer, “Structured audio and effects processing in the MPEG-4
multimedia standard,”ACM Multimedia Syst., vol. 7, no. 1, p. 11,
1999.

[295] E. Scheireret al., “AudioBIFS: The MPEG-4 standard for effects
processing,” inProc. DAFX98 Workshop on Digital Audio Effects
Processing, Nov. 1998.

[296] E. Scheirer, “The MPEG-4 structured audio orchestra language,” in
Proc. ICMC, Oct. 1998.

[297] E. Scheirer and L. Ray, “Algorithmic and wavetable synthesis in
the MPEG-4 multimedia standard,” inProc. 105th AES Conv., Sept.
1998, preprint 4811.

[298] B. Vercoe, W. Gardner , and E. Scheirer , “Structured audio: Cre-
ation, transmission, and rendering of parametric sound representa-
tions,” Proc. IEEE, vol. 86, pp. 922–940, May 1998.

[299] MPEG-4 structured audio homepage[Online]. Available: HTTP:
http://sound.media.mit.edu/~eds/~mpeg4

[300] A. Hoogendoorn, “Digital compact cassette,”Proc. IEEE, vol. 82,
pp. 1479–1489, Oct. 1994.

[301] T. Yoshida, “The rewritable MiniDisc system,”Proc. IEEE, vol. 82,
pp. 1492–1500, Oct. 1994.

[302] K. Tsutsui, “ATRAC (adaptive transform acoustic coding) and
ATRAC 2,” in The Digital Signal Processing Handbook, V. Madis-
etti and D. Williams, Eds. Boca Raton, FL: CRC Press, 1998, pp.
43.16–43.20.

[303] K. Tsutsui, H. Suzuki, O. Shimoyoshi, M. Sonohara, K. Akagiri, and
R. Heddle, “ATRAC: adaptive transform acoustic coding for Mini-
Disc,” Collected Papers on Digital Audio Bit-Rate Reduction, pp.
95–101, 1996.

[304] H. Yamauchi, K. Akagiri, M. Katakura, E. Saito, M. Kohut, M.
Nishiguchi, and K. Tsutsui, “The SDDS system for digitizing film
sound,” inThe Digital Signal Processing Handbook, V. Madisetti
and D. Williams, Eds. Boca Raton, FL: CRC Press, 1998, pp.
43.6–43.12.

[305] J. Johnston and A. Ferreira, “Sum-difference stereo transform
coding,” in Proc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP-92), May 1992, pp. II-569–II-572.

[306] D. Sinha, J. D. Johnson, S. Dorward, and S. Quackenbush, “The per-
ceptual audio coder (PAC),” inThe Digital Signal Processing Hand-
book, V. Madisetti and D. Williams, Eds. Boca Raton, FL: CRC
Press, 1998, pp. 42.1–42.18.

[307] J. Johnston, D. Sinha, S. Dorward, and S. Quackenbush, “AT&T
perceptual audio coding (PAC),”Collected Papers on Digital Audio
Bit-Rate Reduction, pp. 73–81, 1996.

510 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000



[308] D. Sinha and J. Johnston, “Audio compression at low bit rates using
a signal adaptive switched filterbank,” inProc. Int. Conf. Acous-
tics, Speech, and Signal Processing (ICASSP-96), May 1996, pp.
1053–1056.

[309] B.C. J. Moore,Introduction to the Psychology of Hearing. New
York: Academic, 1977.

[310] ISO-II, JTC1/SC29/WG11 N1420, “Report on the MPEG/audio
multichannel formal subjective listening tests,” ISO/MPEG-II
Audio Committee, ISO/MPEG doc. MPEG94/063, 1994.

[311] D. Sinha and C. E. W. Sundberg, “Unequal error protection (UEP)
for perceptual audio coders,” inProc. 104th Aud. Eng. Soc. Conv.,
May 1998, preprint 4754.

[312] G. Davidson, L. Fielder, and M. Antill, “Low-complexity transform
coder for satellite link applications,” inProc. 89th Conv. Aud. Eng.
Soc., 1990, preprint 2966.

[313] L. Fielder and G. Davidson, “AC-2: A family of low complexity
transform-based music coders,” inProc. 10th AES Int. Conf., Sept.
1991.

[314] G. Davidson and M. Bosi, “AC-2: High quality audio coding for
broadcasting and storage,” inProc. 46th Annu. Broadcast Eng.
Conf., Apr. 1992, pp. 98–105.

[315] M. Davis, “The AC-3 multichannel coder,” inProc. 95th Conv. Aud.
Eng. Soc., Oct. 1993, preprint 3774.

[316] C. Todd, G. Davidson, M. Davis, L. Fielder, B. Link, and S. Vernon,
“AC-3: Flexible perceptual coding for audio transmission and
storage,” inProc. 96th Conv. Aud. Eng. Soc., Feb. 1994, preprint
3796.

[317] G. Davidson, “Digital audio coding: Dolby AC-3,” inThe Digital
Signal Processing Handbook, V. Madisetti and D. Williams,
Eds. Boca Raton, FL: CRC Press, 1998, pp. 41.1–41.21.

[318] J. Blauert,Spatial Hearing. Cambridge, MA: MIT Press, 1974.
[319] M. Davis and C. Todd, “AC-3 operation, bitstream syntax, and fea-

tures,” inProc. 97th Conv. Aud. Eng. Soc., 1994, preprint 3910.
[320] S. Vernon, “Design and implementation of AC-3 coders,”IEEE

Trans. Consumer Elec., Aug. 1995.
[321] S. Vernon, V. Fruchter, and S. Kusevitzky, “A single-chip DSP

implementation of a high-quality, low bit-rate multi-channel audio
coder,” inProc. 95th Conv. Aud. Eng. Soc., 1993, preprint 3775.

[322] K. Terry and J. Seaver, “A real-time, multichannel dolby AC-3 audio
encoder implementation,” inProc. 101st Conv. Aud. Eng. Soc., Nov.
1996, preprint 4363.

[323] Digital Television Standard, United States Advanced Televi-
sion Systems Committee (ATSC). [Online]. Available: WWW:
http://www.atsc.org/Standards/A53/, Sept., 1995 Doc. A/53.

[324] Digital Audio-Visual Council (DAVIC), “DAVIC technical specifica-
tion 1.2—Part 9,”Information Representation. [Online]. Available:
WWW: http://www.davic.org, Dec. 1996.

[325] T. Ryden, “Using listening tests to assess audio codecs,”Collected
Papers on Digital Audio Bit-Rate Reduction, pp. 115–125, 1996.

[326] S. Bech, “Selection and training of subjects for listening tests on
sound-reproducing equipment,”J. Aud. Eng. Soc., pp. 590–610,
July/Aug. 1992.

[327] International Telecommunications Union, “Subjective assessment of
sound quality,” Radio Communications Sector (ITU-R), Dusseldorf,
Germany, CCIR Rec. 562-3, pt. 1, 1990.

[328] International Telecommunications Union, “Telephone transmission
quality subjective opinion tests,” Radio Communications Sector
(ITU-R), Rec. P.80, 1994.

[329] T. Sporer, “Evaluating small impairments with the mean opinion
scale—Reliable or just a guess?,” inProc. 101st Conv. Aud. Eng.
Soc., Nov. 1996, preprint 4396.

[330] M. Keyhl, C. Schmidner, T. Sporer, and R. Peterson, “Quality assur-
ance tests of MPEG encoders for a digital broadcasting system—Part
II: Minimizing subjective test efforts by perceptual measurements,”
in Proc. 104th Conv. Aud. Eng. Soc., May 1998, preprint 4753.

[331] “Subjective performance assessment of telephone-band and wide-
band digital codecs,” International Telecommunications Union,
Dusseldorf, Germany, Rec. P.830, 1996.

[332] K. Precoda and T. Meng, “Listener differences in audio compression
evaluations,”J. Aud. Eng. Soc., vol. 45, no. 9, pp. 708–715, Sept.
1997.

[333] S. Schiffman, M. Reynolds, and F. Young,Introduction to Multidi-
mensional Scaling: Theory, Method, and Applications. New York:
Academic, 1981.

[334] S. Shlien and G. Soulodre, “Measuring the characteristics of "expert"
listeners,” inProc. 101st Conv. Aud. Eng. Soc., Nov. 1996, preprint
4339.

[335] A. Milne, “New test methods for digital audio data compression al-
gorihtms,” inProc. 11th Int. Conf. Aud. Eng. Soc., May 1992, pp.
210–215.

[336] D. Moulton and M. Moulton, “Measurement of small impairments
of perceptual audio coders using a 3-facet rasch model,” inProc.
104th Conv. Aud. Eng. Soc., May 1998, preprint 4709.

[337] D. Moulton and M. Moulton, “Codec ‘transparency,’ listener
‘severity,’ program ‘intolerance’: Suggestive relationships between
Rasch measures and some background variables,” inProc. 105th
Conv. Aud. Eng. Soc., Sept. 1998, preprint 4843.

[338] J. Linacre,Many-Facet Rasch Measurement. Chicago, IL: MESA
Press, 1994.

[339] G. Rasch,Probabilistic Models for Some Intelligence Attainment
Tests. Chicago, IL: Univ. of Chicago Press, 1980.

[340] M. Karjaleinen, “A new auditory model for the evaluation of sound
quality of audio systems,” inProc. ICASSP-85, May 1985, pp.
608–611.

[341] K. Brandenburg, “Evaluation of quality for audio encoding at low
bit rates,” inProc. 82nd Conv. Aud. Eng. Soc., Mar. 1987, preprint
2433.

[342] J. Beerends and J. Stemerdink, “Measuring the quality of audio de-
vices,” inProc. 90th Conv. Aud. Eng. Soc., Feb. 1991, preprint 3070.

[343] , “A perceptual audio quality measure,” inProc. 92nd Conv.
Aud. Eng. Soc., Mar. 1992, preprint 3311.

[344] K. Brandenburg and T. Sporer, “"NMR" and "masking flag": Eval-
uation of quality using perceptual criteria,” inProc. 11th Int. Conf.
Aud. Eng. Soc., May 1992, pp. 169–179.

[345] B. Paillard, P. Mabilleau, and S. Morissette, “PERCEVAL: Percep-
tual evaluation of the quality of audio signals,”J. Aud. Eng. Soc.,
vol. 40, no. 1/2, pp. 21–31, Jan./Feb. 1992.

[346] J. Beerends and J. Stemerdink, “Modeling a cognitive aspect in the
measurement of the quality of music codecs,” inProc. 96th Conv.
Aud. Eng. Soc., 1994, preprint 3800.

[347] , “Measuring the quality of speech and music codecs: An in-
tegrated psychoacoustic approach,” inProc. 98th Conv. Aud. Eng.
Soc., 1995, preprint 3945.

[348] J. Beerends, W. van den Brink, and B. Rodger, “The role of infor-
mational masking and perceptual streaming in the measurement of
music codec quality,” inProc. 100th Conv. Aud. Eng. Soc., May
1996, preprint 4176.

[349] T. Thiede and E. Kabot, “A new perceptual quality measure for bit
rate reduced audio,” inProc. 100th Conv. Aud. Eng. Soc., May 1996,
preprint 4280.

[350] “Comparison between NMR, PERCEVAL, and PAQM as predictors
of the subjective audio quality,” International Telecommunications
Union, Radio Communications Sector (ITU-R), Doc. 10-4/1-E, July
1994.

[351] T. Sporer, “Objective audio signal evaluation—Applied psychoa-
coustics for modeling the perceived quality of digital audio,” inProc.
103rd Conv. Aud. Eng. Soc., Sept. 1997, preprint 4512.

[352] “Method for objective measurements of perceived audio quality,”
International Telecommunications Union, Radio Communications
Sector (ITU-R), Rec. BS.1387.

[353] T. Painter and A. Spanias,From G.722 to MP3 and Beyond: Algo-
rithms for Perceptual Audio Coding,monograph in final preparation.

[354] G. Soulodreet al., “Subjective evaluation of state-of-the-art two-
channel audio codecs,”J. Aud. Eng. Soc., vol. 46, no. 3, pp. 164–177,
Mar. 1998.

[355] “Low bit rate audio coding,” ITU-R, Geneva, Switzerland, Rec.
BS.1115, 1997.

[356] U. Wustenhagen, B. Feiten, and W. Hoeg, “Subjective listening test
of multichannel audio codecs,” inProc. 105th Conv. Aud. Eng. Soc.,
Sept. 1998, preprint 4813.

[357] “Multi-channel stereophonic sound system with and without accom-
panying picture,” ITU-R, Rec. BS.775-1, Nov. 1993.

[358] G. Stoll, “A perceptual coding technique offering the best compro-
mise between quality, bit-rate, and complexity for DSB,” inProc.
94th Audio Eng. Soc. Conv., Berlin, Germany, Mar. 1993, preprint
3458.

[359] R. K. Jurgen, “Broadcasting with digital audio,”IEEE Spectrum, pp.
52–59, Mar. 1996.

[360] W. Pritchard and M. Ogata, “Satellite Direct Broadcast,”Proc. IEEE,
vol. 78, pp. 1116–1140, July 1990.

[361] P. Craven and M. Gerzon, “Lossless coding for audio discs,”J. Aud.
Eng. Soc., pp. 706–720, Sept. 1996.

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 511



[362] Digital Audio Compression Standard (AC-3), United States
Advanced Television Systems Committee (ATSC), Doc. A/52,
Dec 1995. [Online]. Available: WWW: http://www.atsc.org/Stan-
dards/A52/.

[363] C. Todd, G. Davidson, M. Davis, L. Fielder, B. Link, and S. Vernon,
“AC-3: Flexible perceptual coding for audio transmission and
storage,” inProc. 96th Conv. Aud. Eng. Soc., Feb. 1994, preprint
3796.

[364] M. Dietz, H. Popp, and K. Brandenburg, “Audio compression for
network transmission,”J. Audio Eng. Soc., pp. 58–70, Jan./Feb.
1996.

[365] T. Yoshida, “The rewritable MiniDisc system,”Proc. IEEE, vol. 82,
pp. 1492–1500, Oct. 1994.

[366] G. C. P. Lokhoff, “Precision adaptive sub-band coding (PASC) for
the digital compact cassette (DCC),”IEEE Trans. Consumer Elec-
tron., pp. 784–789, Nov. 1992.

[367] A. Hoogendoorn, “Digital compact cassette,”Proc. IEEE, vol. 82,
pp. 1479–1489, Oct. 1994.

[368] ISO/IEC, JTC1/SC29/WG11 MPEG94/443, “Requirements for low
bitrate audio coding/MPEG-4 audio,”, MPEG-4, 1994.

[369] Y. Mahieux and J. P. Petit, “High-quality audio transform coding at
64 kb/s,”IEEE Trans. Commun., vol. 42, pp. 3010–3019, Nov. 1994.

[370] M. Purat and P. Noll, “Audio coding with a dynamic wavelet packet
decomposition based on frequency-varying modulated lapped trans-
forms,” in Proc. ICASSP-96, May 1996, pp. 1021–1024.

[371] D. Sinha and A. Tewfik, “Low bit rate transparent audio compression
using adapted wavelets,”IEEE Trans. Signal Processing, vol. 41, pp.
3463–3479, Dec. 1993.

[372] J. Princen and J. D. Johnston, “Audio coding with signal adaptive
filterbanks,” inProc. ICASSP-95, May 1995, pp. 3071–3074.

[373] D. Sinha and J. D. Johnston, “Audio compression at low bit rates
using a signal adaptive switched filterbank,” inProc. ICASSP-96,
May 1996, pp. 1053–1056.

[374] L. Mainard and M. Lever, “A bi-dimensional coding scheme ap-
plied to audio bitrate reduction,” inProc. ICASSP-96, May 1996,
pp. 1017–1020.

[375] S. Boland and M. Deriche, “High quality audio coding using multi-
pulse LPC and wavelet decomposition,” inProc. ICASSP-95, May
1995, pp. 3067–3070.

[376] P. Monta and S. Cheung, “Low rate audio coder with hierarchical fil-
terbanks and lattice vector quantization,” inProc. ICASSP-94, May
1994, pp. II-209–II-212.

[377] D. Schulz, “Improving audio codecs by noise substitution,”J. Audio
Eng. Soc., pp. 593–598, July\Aug. 1996.

[378] B. Grill, J. Herre, K. Brandenburg, E. Eberlein, J. Koller, and J.
Muller, “Improved MPEG-2 audio multi-channel encoding,” in
Proc. 96th Conv. Aud. Eng. Soc., Feb. 1994, preprint 3865.

[379] W. R. Th. ten Kate, “Scalability in MPEG audio compression: From
stereo via 5.1-channel surround sound to 7.1-channel augmented
sound fields,” inProc. 100th Conv. Aud. Eng. Soc., May 1996,
preprint 4196.

[380] E. Allamanche, R. Geiger, J. Herre, and T. Sporer, “MPEG-4 low
delay audio coding based on the AAC codec,” inProc. 106th Conv.
Aud. Eng. Soc., May 1999, preprint 4929.

[381] K. Brandenburg and B. Grill, “First ideas on scalable audio coding,”
in Proc. 97th Conv. Aud. Eng. Soc., Nov. 1994, preprint 3924.

[382] B. Grill and K. Brandenburg, “Two- or three-stage bit-rate scalable
audio coding system,” inProc. 99th Conv. Aud. Eng. Soc., Oct. 1995,
preprint 4132.

[383] A. Spanias and T. Painter, “Universal speech and audio coding using
a sinusoidal signal model,” ASU-TRC, Jan. 1997.

[384] A. Jin, T. Moriya, T. Norimatsu, M. Tsushima, and T. Ishikawa,
“Scalable audio coder based on quantizer units of MDCT coeffi-
cients,” inProc. ICASSP-99, Mar. 1999, pp. 897–900.

[385] J. Herre, E. Allamanche, K. Brandenburg, M. Dietz, B. Teichmann,
and B. Grill, “The integrated filterbank based scalable MPEG-4
audio coder,” inProc. 105th Conv. Aud. Eng. Soc., Sept. 1998,
preprint 4810.

[386] M. Hans and R. Schafer, “An MPEG audio layered transcoder,” in
Proc. 105th Conv. Aud. Eng. Soc., Sept. 1998, preprint 4812.

[387] B. Grill and B. Teichmann, “Scalable joint stereo coding,” inProc.
105th Conv. Aud. Eng. Soc., Sept. 1998, preprint 4851.

[388] L. Ben and M. Sandler, “Joint source and channel coding for internet
audio transmission,” inProc. 106th Conv. Aud. Eng. Soc., May 1999,
preprint 4932.

[389] S. Ramprashad, “A two-stage hybrid embedded speech/audio coding
structure,” inProc. ICASSP-98, vol. I, May 1998, pp. 337–340.

[390] T. Moriya, N. Iwakami, A. Jin, K. Ikeda, and S. Miki, “A design of
transform coder for both speech and audio signals at 1 bit/sample,”
in Proc. ICASSP-97, Apr. 1997, pp. 1371–1374.

[391] G. Schuller, “Time-varying filter banks with low delay for audio
coding,” in Proc. 105th Conv. Aud. Eng. Soc., Sept. 1998, preprint
4809.

[392] F. Baumgarte, “Evaluation of a physiological ear model considering
masking effects relevant to audio coding,” inProc. 105th Conv. Aud.
Eng. Soc., Sept. 1998, preprint 4789.

[393] Y. Huang and T. Chiueh, “A new forward masking model and its
application to perceptual audio coding,” inProc. ICASSP-99, Mar.
1999, pp. 905–908.

[394] C. Lanciani and R. Schafer, “Subband-domain filtering of MPEG
audio signals,” inProc. ICASSP-99, Mar. 1999, pp. 917–920.

[395] C. Neubauer and J. Herre, “Digital watermarking and its influence
on audio quality,” inProc. 105th Conv. Aud. Eng. Soc., Sept. 1998,
preprint 4823.

[396] A. Tewfik, M. Swanson, and B. Zhu, “Data embedding in audio:
Where do we stand,” inProc. ICASSP-99, Mar. 1999, p. 2075.

[397] *“Method for objective measurements of perceived audio quality,”,
ITU-R BS.1387, 1998.

[398] K. Konstantinides, “Fast subband filtering in MPEG audio coding,”
IEEE Signal Processing Lett., vol. 1, pp. 26–28, Feb. 1994.

[399] T. Trinkaus, “Perceptual coding of audio and diverse speech signals,”
Ph.D. dissertation, Georgia Institute of Technology, Atlanta, Dec.
1999.

[400] T. Trinkaus and M. Clements, “An algorithm for compression of
wideband diverse speech and audio signals,” inProc. ICASSP-99,
Mar. 1999, pp. 901–904.

[401] R. Arean, J. Kovacevic, and V. Goyal, “Multiple description percep-
tual audio coding with correlating transforms,”IEEE Trans. Speech
Audio, vol. 8, pp. 140–145, Mar. 2000.

[402] T. Thiede, W. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J.
Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg, and
B. Feiten, “PEAQ-The ITU standard for objective measurement
of perceived audio quality,”J. Aud. Eng. Soc, vol. 48, pp. 3–29,
Jan./Feb. 2000.

[403] W. Treurniet and G. Soulodre, “Evaluation of the ITU-R objective
audio quality measurement method,”J. Aud. Eng. Soc, pp. 164–173,
Mar. 2000.

[404] G. Schuller and T. Karp, “Modulated filter banks with arbitrary
system delay: Efficient implementations and the time-varying case,”
IEEE Trans. Signal Processing, vol. 48, pp. 737–748, Mar. 2000.

[405] J. O. Smith, III and J. Abel, “Bark and ERB bilinear transforms,”
IEEE Trans. Speech Audio Processing, vol. 7, pp. 697–708, Nov.
1999.

Ted Painter (S’95) was born in Boston, MA, in
1967. He received the A.B. degree in engineering
sciences and computer science from Dartmouth
College, Hanover, NH, in 1989 and the M.S.
degree in electrical engineering from Arizona
State University (ASU), Tempe, in 1995. He is
currently pursuing the Ph.D. degree in electrical
engineering at the ASU Telecommunications
Research Center (TRC).

Prior to joining ASU, he was an Embedded
Systems Development Engineer with Applied

Systems, Gilbert, AZ, from 1989 to 1992, and then an Industrial Fellow
with the Flight Controls Group at Honeywell Commercial Flight Systems,
Phoenix, AZ, from 1992 to 1994. He has been a Research Associate with
the ASU TRC since 1995. He recently joined the Technical Staff of the
StrongARM Systems Engineering Group at Intel Corp., Hudson, MA.
His primary research interests are in the areas of speech and audio signal
processing, perceptual coding, and psychoacoustics.

Mr. Painter is a student member of the Audio Engineering Society.

512 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000



Andreas Spanias (S’84–M’85–SM’94), is
a Professor in the Department of Electrical
Engineering at Arizona State University (ASU),
Tempe. His research interests are in the areas
of adaptive signal processing and speech
processing. He has been Principal Investigator
on research contracts from Intel Corporation,
Sandia National Labs, Motorola Inc., and Active
Noise and Vibration Technologies. He has
also consulted with Inter-Tel Communications,
Texas Instruments, and the Cyprus Institute of

Neurology and Genetics.
He is a member of the DSP Committee of the IEEE Circuits and Systems

Society, and has served as a member in the Technical Committee on Statis-
tical Signal and Array Processing of the IEEE Signal Processing Society. He
has also served as Associate Editor of the IEEE TRANSACTIONS ONSIGNAL

PROCESSINGand as General Co-chair of the 1999 International Conference
on Acoustics Speech and Signal Processing (ICASSP-99) in Phoenix, AZ.
He is currently the IEEE Signal Processing Vice-President for Conferences
and the Chair of the Signal Procesing Conference Board. He is also member
of the IEEE Signal Processing Executive Committee and Associate Editor
of the IEEE SIGNAL PROCESSINGLETTERS.

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 513


