Fall 1999

Homework #6

Dec. 2, 1999

HOMEWORK ASSIGNMENT #6

Due Thurs. Dec. 16, 1999

- 1. In the first problem you will "restore" an artificial click-corrupted signal using the LSAR method discussed in class. Assume block length M=150 and AR model order P=5. Please include the line randn('state',0) at the top of your Matlab file.
 - (a) First, create the observed signal x(n) = s(n) + i(n)w(n) of length M + P.
 - The "audio" signal s(n) will be generated by driving an AR filter $H(z) = \frac{1}{1-A(z)}$ with zero-mean white Gaussian noise. Use 4^{th} -order polynomial

$$A(z) = 3.1166z^{-1} - 3.8769z^{-2} + 2.2661z^{-3} - 0.5184z^{-4}$$

and normalize resulting sequence $\{s(n)\}$ so that it has unit variance. (Hint: filter.m.)

- The noise w(n) will be zero-mean Gaussian with standard deviation $\sigma_w = 2$.
- The switching process i(n) will be zero except for $n \in \mathcal{N}_i$ where

$$\mathcal{N}_i = \{6, 27, 30, 48, 51, 63, 75, 79, 80, 139\},\$$

at which points i(n) = 1.

(b) Find the P^{th} -order AR model for the observed data x(n) yielding minimum sum-squared prediction error $e_x(n)$ and compute this prediction error sequence. I.e., find $\hat{A}(z) = \sum_{\ell=1}^{P} \hat{a}_{\ell} z^{-\ell}$ minimizing $\sum_n e_x^2(n)$, where

$$x(n) = e_x(n) + \sum_{\ell=1}^{P} x(n-\ell)\hat{a}_{\ell}.$$

This AR model $\hat{A}(z)$ is a rough estimate of the AR model generating the noiseless process $\{s(n)\}$. (Note that $\hat{A}(z)$ is 5^{th} -order while A(z) is 4^{th} -order.) How close is $\hat{A}(z)$ to A(z)?

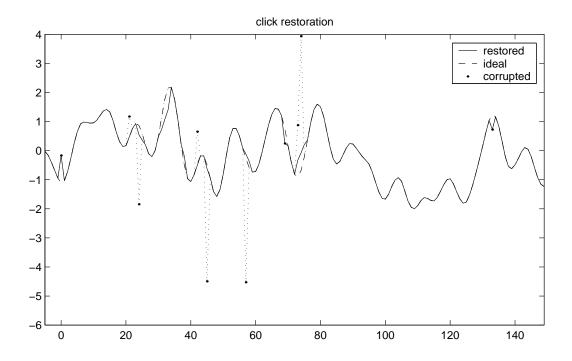
- (c) Estimate \mathcal{N}_i by searching for n such that $e_x(n) > 3\sigma_e$, where σ_e is the standard deviation of the smallest $\lceil 0.95M \rceil$ values of $e_x(n)$. (This is done to remove the outliers which would otherwise bias the estimation of σ_e —use sort.m.) We'll refer to these estimated indices $\{n\}$ as $\hat{\mathcal{N}}_i$. How do $\hat{\mathcal{N}}_i$ and \mathcal{N}_i compare?
- (d) Estimate $s(n)|_{n \in \hat{\mathcal{N}}_i}$ by determining the values that, together with $s(n)|_{n \notin \hat{\mathcal{N}}_i}$, minimize the resulting sum-squared prediction error $e_s(n)$ assuming AR model $\hat{A}(z)$:

$$s(n) = e_s(n) + \sum_{\ell=1}^{P} s(n-\ell)\hat{a}_{\ell}.$$

(Use setdiff.m to find the set $\{n : n \notin \mathcal{N}_i\}$.) The resulting sequence will be referred to as $\hat{s}(n)$. How do $\{\hat{s}(n)\}$ and $\{\mathbf{s}(n)\}$ compare?

(e) Plot x(n), s(n), $\hat{s}(n)$, $e_x(n)$, and $e_x(n)|_{n \in \hat{\mathcal{N}}_i}$ as in Fig. 1.

©P. Schniter, 1999



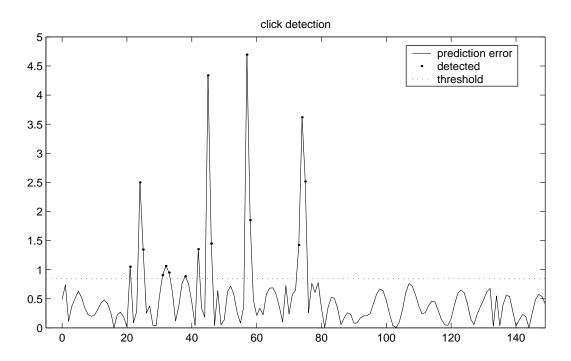


Figure 1: Example of LSAR click detection and restoration.

©P. Schniter, 1999

- 2. The model parameters $\hat{A}(z)$ computed in 1(b) were computed using noisy data x(n), yet are used in 1(c)-(d) to detect deviations from, as well as reconstruct, the noiseless data s(n)! This mismatch can lead to poor estimates of s(n). But perhaps we can do better...
 - (a) Re-estimate A(z) as a P^{th} -order polynomial $\check{A}(z)$ using the sequence $\hat{s}(n)$ obtained from 1(d). Is $\check{A}(z)$ a better estimate than $\hat{A}(z)$ (as obtained in Problem 1(b))?
 - (b) Compute the prediction error sequence $\{\check{e}(n)\}$:

$$\check{e}_x(n) = x(n) - \sum_{\ell=1}^{P} \hat{s}(n-\ell)\check{a}_{\ell}$$

and use it to estimate \mathcal{N}_i as in 1(c). Is the resulting $\check{\mathcal{N}}_i$ a better estimate than $\hat{\mathcal{N}}_i$ (as obtained in Problem 1(c))?

- (c) Estimate $s(n)|_{n\in\tilde{\mathcal{N}}_i}$ as in 1(d), but using $\check{A}(z)$ of course. Is the resulting $\{\check{s}(n)\}$ a better estimate than $\{\hat{s}(n)\}$ (as obtained in Problem 1(d))?
- (d) Plot $x(n), s(n), \check{s}(n), \check{e}_x(n), \text{ and } \check{e}_x(n)|_{n \in \check{\mathcal{N}}_i} \text{ as in Fig. 1.}$
- (e) Assuming that $\check{s}(n)$ shows improvement over $\hat{s}(n)$, we expect that it could yield an even better estimate of A(z) than obtained in part (a) of this problem. Modify your code so that it is capable of iteratively re-estimating A(z) (and hence \mathcal{N}_i & s(n)) an arbitrary number of times. Calculate $\check{A}(z)$, $\check{\mathcal{N}}_i$, and $\check{s}(n)$ and show plots akin to that in 2(d) for two more re-estimations. Do the estimates improve?