
EE-597 Audio Signal Processing Fall 1999

Homework #6 Dec. 2, 1999

HOMEWORK ASSIGNMENT #6

Due Thurs. Dec. 16, 1999

1. In the first problem you will “restore” an artificial click-corrupted signal using the LSAR method

discussed in class. Assume block length M = 150 and AR model order P = 5. Please include the

line randn(’state’,0) at the top of your Matlab file.

(a) First, create the observed signal x(n) = s(n) + i(n)w(n) of length M + P .

• The “audio” signal s(n) will be generated by driving an AR filter H(z) = 1
1−A(z) with

zero-mean white Gaussian noise. Use 4th-order polynomial

A(z) = 3.1166z−1 − 3.8769z−2 + 2.2661z−3 − 0.5184z−4

and normalize resulting sequence {s(n)} so that it has unit variance. (Hint: filter.m.)

• The noise w(n) will be zero-mean Gaussian with standard deviation σw = 2.

• The switching process i(n) will be zero except for n ∈ Ni where

Ni = {6, 27, 30, 48, 51, 63, 75, 79, 80, 139},

at which points i(n) = 1.

(b) Find the P th-order AR model for the observed data x(n) yielding minimum sum-squared

prediction error ex(n) and compute this prediction error sequence. I.e., find Â(z) =
∑P

`=1 â`z
−`

minimizing
∑

n e2
x(n), where

x(n) = ex(n) +

P∑

`=1

x(n − `)â`.

This AR model Â(z) is a rough estimate of the AR model generating the noiseless process

{s(n)}. (Note that Â(z) is 5th-order while A(z) is 4th-order.) How close is Â(z) to A(z)?

(c) Estimate Ni by searching for n such that ex(n) > 3σe, where σe is the standard deviation

of the smallest d0.95Me values of ex(n). (This is done to remove the outliers which would

otherwise bias the estimation of σe—use sort.m.) We’ll refer to these estimated indices {n}

as N̂i. How do N̂i and Ni compare?

(d) Estimate s(n)|n∈N̂i
by determining the values that, together with s(n)|n/∈N̂i

, minimize the

resulting sum-squared prediction error es(n) assuming AR model Â(z):

s(n) = es(n) +
P∑

`=1

s(n − `)â`.

(Use setdiff.m to find the set {n : n /∈ Ni}.) The resulting sequence will be referred to as

ŝ(n). How do {ŝ(n)} and {s(n)} compare?

(e) Plot x(n), s(n), ŝ(n), ex(n), and ex(n)|n∈N̂i
as in Fig. 1.
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Figure 1: Example of LSAR click detection and restoration.
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2. The model parameters Â(z) computed in 1(b) were computed using noisy data x(n), yet are used

in 1(c)-(d) to detect deviations from, as well as reconstruct, the noiseless data s(n)! This mismatch

can lead to poor estimates of s(n). But perhaps we can do better. . .

(a) Re-estimate A(z) as a P th-order polynomial Ǎ(z) using the sequence ŝ(n) obtained from 1(d).

Is Ǎ(z) a better estimate than Â(z) (as obtained in Problem 1(b))?

(b) Compute the prediction error sequence {ě(n)}:

ěx(n) = x(n) −
P∑

`=1

ŝ(n − `)ǎ`

and use it to estimate Ni as in 1(c). Is the resulting Ňi a better estimate than N̂i (as obtained

in Problem 1(c))?

(c) Estimate s(n)|n∈Ňi
as in 1(d), but using Ǎ(z) of course. Is the resulting {š(n)} a better

estimate than {ŝ(n)} (as obtained in Problem 1(d))?

(d) Plot x(n), s(n), š(n), ěx(n), and ěx(n)|n∈Ňi
as in Fig. 1.

(e) Assuming that š(n) shows improvement over ŝ(n), we expect that it could yield an even better

estimate of A(z) than obtained in part (a) of this problem. Modify your code so that it is

capable of iteratively re-estimating A(z) (and hence Ni & s(n)) an arbitrary number of times.

Calculate Ǎ(z), Ňi, and š(n) and show plots akin to that in 2(d) for two more re-estimations.

Do the estimates improve?
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