EE-597 Audio Signal Processing Fall 1999
Homework #3 Oct. 5, 1999

HOMEWORK ASSIGNMENT #3
Due Tues. Oct. 19, 1999 (in class)

1. Practical Bit Allocation:
With regards to bit allocation for transform coder outputs, we proved that the constrained opti-
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N—1

=
. 2 5—2R
min o, 27 st R:—ZRk
Yk
1S s N k=0
(where agk is the variance of the k** transform output, Ry is the bit rate allocated for transmission
of this output, and R is the average bit rate over all outputs) led to the optimal bit allocation rule
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Recognizing that the equation above may yield impractical (e.g, negative or non-integer) values for
R}, we discussed a practical bit allocation strategy where, one by one, R, are fixed at practical

values and the remaining { Ry} are re-optimized. Specifically, consider the following algorithm:

Ko ={}, %set of allocated output indices
Ky, =1{0,1,2,...,N—1}, Y%set of unallocated output indices
while K, # {},
calculate quasi-optimal {R}":k € K,},
set k, = argmingex, )",
round R;” to nearest non-negative integer, saving as practical Ry,
remove k, from K, and add k., to K.,
end.

The step “calculate quasi-optimal {R}*:k € KC,}” requires solving the following constrained
optimization problem.
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Prove that the solution is given by

2
Ty,

1/ size(KCy)
(Ikex., 73.)

(Don’t be intimidated—this is a lot easier than it might look!)

NR — Zke)ca Ry,
size(ICy,)
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Ry = + §log2 for (e K,.
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2. Adaptive Transform Coding:

In this problem you will implement the adaptive transform coder in Fig. 1.

Yr(m) Jk(m) Jrk(m)
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Figure 1: An Adaptive Transform Coder

The input z(n) will be an “autoregressive” (AR) process generated by filtering zero-mean white
Gaussian noise v(n) (02 = 1) through linear system H(z) = B(z)/A(z) = 1/(1 — 0.8271).

The quantizers will be uniform with Lj(m) = 27" levels, where Ry (m) is calculated using the

method of Problem 1, but with ¢; replaced by the backward variance estimate 65k (m):

2
Yk

g2 (m) = (1—-a)gi(m—1)+aé2, (m—1), k=0,...,N-1.

Assume « = 0.95, transform size N = 16, average bit rate R = 4 bits/sample, and quantizer design
factor ¢y, = 3. (You should not be generating any random data until part (e) below!)

(a) Plot the input power spectrum S;(e/*). (Hint: Realize xz(n) = >, hv(n — i), where
{ho, h1,...} is the impulse response of H(z). Use the Matlab command impz to find a trun-
cated approximation of {h;}.)

(b) What is the asymptotic reconstruction error variance af‘ = var(Z(n) — x(n)) for the

optimal infinite-dimensional transform and optimal bit allocation?

(c) What is the reconstruction error variance af‘TC N when using the optimal N x N transform

and optimal bit allocation? (Hint: Use toeplitz to construct the autocorrelation matrix and
eig to compute the eigendecomposition.)

(d) For transform T, prove that (o7 ,...,00 )" = diag(TR,T"), where diag(-) extracts the
main diagonal of a matrix.
What is the reconstruction error variance UE‘TC N when using the DCT and optimal bit

allocation? (Hint: Construct T with dctmtx.)

(e) For M = 1000, generate an M N-length realization of z(n) and implement the adaptive TC
scheme of Fig. 1 using a DCT. (Hint: use filter to create x(n), initialize 67, (0) = o2 VE,
and use [R_srt,indx]=sort(R-opt) in the bit allocation procedure.)

One on plot, display the optimal bit allocations for the two branches £k = 0 and k = N—1
together with the practical bit allocations for the same branches (see Fig. 2 for an example).

What is the mean-squared reconstruction error rc = 17+ Eﬁ@é |Z(n) — z(n)|??
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(f) For the same input sequence z(n), compute Epcy for the PCM system in Fig. 3. Assume
uniform quantization with L = 2 levels and quantizer design factor ¢, = 3. (See previous

homework solutions for efficient ways of doing this.)

(g) Discuss the differences between the various values of o2 ‘TC N and € computed in parts (b)-(f).

—— optimal, k=0
— practical, k=0
— — optimal, k=N-1
— - practical, k=N-1

bits/sample
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m

Figure 2: Optimal and practical bit allocations for output branches k = 0 and kK = N—1 versus input block m.
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Figure 3: PCM system.

3. Suboptimal Transforms:
Now we’ll compare the performance of various transforms as a function of transform dimension.

(a) Consider the AR input process generated by passing zero-mean white Gaussian noise through
the filter
H(z) = L _ ! .
A(z) 1-0.827140.422
Assuming optimal bit allocation, plot theoretical TC gain over PCM for transform dimensions
N =1,2,4,8,16, 32,64 and the following transforms: KLT, DCT, real-DFT, DHT. Superim-
pose asymptotic (N — oo) TC gain in the form of a dashed line. See Fig. 4 for an example.

(Hint: create appropriate matrix T, then use 2(d).)
(b) Repeat for A(z) =1+0.7271 +0.2272.

(c) Discuss all relevant features of the two plots.
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Figure 4: Example of TC-gain-over-PCM versus transform dimension N for various transforms and a lowpass
source.

(©P. Schniter, 1999 4



