
ECE-501 Introduction to Analog and Digital Communications Winter 2008

Midterm #1 Feb. 6, 2008

MIDTERM #1 SOLUTIONS

1. (a) For a path length of d and propagation speed c, the propagation delay equals τ =

d/c. So, the direct path delay is τd = 3×103m
3×108m/sec

= 1 × 10−5sec = 10µsec , and the

indirect path delay is τi = 6×103m
3×108m/sec

= 2 × 10−5sec = 20µsec .

(b) Here we model the channel that produces x(t) from s(t) as a linear system with im-

pulse response h(t). In other words, x(t) = h(t)∗s(t). Because x(t) is a superposition

of two delayed versions of s(t), one scaled by 1
2 , we can write

x(t) = s(t − τd) + 1
2s(t − τi).

Now, if s(t) had been the impulse δ(t), then the output would have been δ(t− τd) +
1
2δ(t − τi). Thus, the “impulse response” equals

h(t) = δ(t − τd) + 1
2δ(t − τi).

(c) Notice that, for sampling rate 1
Ts

= 100 kHz, the sampling interval is Ts = 1 ×

10−5sec = 10µsec. Thus, τd corresponds to 1 sample of delay, while τi corresponds

to 2 samples of delay. The causal sampled impulse response vector that we would

pass to plottf would then be

h =
[
0, 1

Ts

, 0.5
Ts

]
= [0, 100000, 50000].

Recall, from the lecture and the homework, that a Dirac delta is approximated in

discrete-time using a single spike of height 1
Ts

.
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2. (a) When θ = 0 = φ, we have synchronized AM modulation and demodulation. For this

case, the figure below illustrates the spectrum at the output of the cosine multiplier

in the demodulator in solid lines, and the LPF magnitude response in dashed lines.

f
fcW BpBs−W−Bs 2fc−2fc+W 2fc−W−fc−2fc

For perfect demodulation, we need to preserve the signal up to W Hz and suppress

it after 2fc − W Hz. Thus, we need Bp ≥ W and Bs ≤ 2fc − W .

(b) For general θ and φ, we have

v(t) = LPF
{
r(t) 2 cos(2πfct + φ)

}
(1)

= LPF
{
m(t) 2 cos(2πfct + θ) cos(2πfct + φ)

︸ ︷︷ ︸

cos(4πfct + θ + φ) + cos(θ − φ)

}
(2)

= LPF
{
m(t) cos(4πfct + θ + φ) + m(t) cos(θ − φ)

}
(3)

= m(t) cos(θ − φ) (4)

(c) For general θ and φ, we have

c(t) = LPF
{
r(t) 2 sin(2πfct + φ)

}
(5)

= LPF
{
m(t) 2 cos(2πfct + θ) sin(2πfct + φ)

︸ ︷︷ ︸

sin(4πfct + θ + φ) + sin(φ − θ)

}
(6)

= LPF
{
m(t) sin(4πfct + θ + φ) + m(t) sin(φ − θ)

}
(7)

= m(t) sin(φ − θ), (8)

where lowpass filtering suppressed the double-frequency term sin(4πfct + θ + φ).

(d) From the answer to part (b), we see that setting φ = θ gives v(t) = m(t), i.e., perfect

demodulation. But even if you didn’t get a clear answer to part (b), the block

diagram alone suggests that φ = θ would yield a phase-synchronous AM system,

which we know yields perfect demodulation.

(e) Notice that under the perfect-demod setting φ = θ, the control signal becomes

c(t) = 0 . Thus, even if we didn’t know θ directly, we could still adjust φ until

c(t) = 0 to get perfect demodulation.
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3. (a) From the Fourier transform integral and the Euler identity 2 cos(a) = eja + e−ja,

F
{
m(t) cos(2πfct + θ)

}

=

∫
∞

−∞

m(t) cos(2πfct + θ)e−j2πftdt (9)

=
1

2

∫
∞

−∞

m(t)
[
ej2πfct+jθ + e−j2πfct−jθ

]
e−j2πftdt (10)

=
1

2
ejθ

∫
∞

−∞

m(t)e−j2π(f−fc)tdt +
1

2
e−jθ

∫
∞

−∞

m(t)e−j2π(f+fc)tdt (11)

=
1

2

[

ejθM(f − fc) + e−jθM(f + fc)
]

(12)

(b) Because filtering by C(f) corresponds to frequency-domain multiplication,

S(f) = C(f) · F
{
m(t) cos(2πfct + θ)

}
(13)

=
1

2
C(f)

[

ejθM(f − fc) + e−jθM(f + fc)
]

(14)

(c) In the previous problem, we derived the Fourier transform of the signal m(t) after

multiplication by the cosine cos(2πfct + θ) and subsequent filtering by c(t). Here

we want to essentially the same thing: derive the Fourier transform of the signal

s(t) after multiplication by the cosine cos(2πfct + φ) and subsequent filtering by the

LPF. Thus, repeating (13)-(14), we find

V (f) = LPF(f) · F
{
s(t) 2 cos(2πfct + φ)

}
(15)

= LPF(f)
[

ejφS(f − fc) + e−jφS(f + fc)
]

(16)

=
1

2
LPF(f)

[

ej(φ+θ)C(f − fc)M(f − 2fc) + ej(φ−θ)C(f − fc)M(f)

+ e−j(φ−θ)C(f + fc)M(f) + e−j(φ+θ)C(f + fc)M(f + 2fc)
]

(17)

=
1

2
M(f)

[

ej(φ−θ)C(f − fc) + e−j(φ−θ)C(f + fc)
]

(18)

where lowpass filtering suppressed the M(f−2fc) and M(f+2fc) terms but preserved

the M(f) terms.

(d) Plugging f = 0 into the previous expression, and then using C(fc) = 1 = C(−fc),

V (0) =
1

2
M(0)

[

ej(φ−θ)C(−fc) + e−j(φ−θ)C(fc)
]

(19)

=
1

2
M(0)

[

ej(φ−θ) + e−j(φ−θ)
]

(20)

= M(0) cos(φ − θ) (21)

(e) Under the perfect demodulation condition φ = θ, we have V (0) = M(0) . Thus, if

we didn’t know θ but we knew M(0), then we could adjust φ until V (0) = M(0) to

get perfect demodulation.
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