ECE-501 Introduction to Analog and Digital Communication Winter 2008
Homework #8 Mar. 7, 2008

HOMEWORK SOLUTIONS #-8

1. (a) Since |a[n]|* = | — A]? = A? with probability 1/3, |a[n]|> = 0 with probability 1/3, and
la[n]|* = |2A]?> = 4A? with probability 1/3, we see that

E{la[n]} = > lal*-Pr{a[n] = a} (1)
ae{—A,0,2A}
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(b) To start, we draw the decision boundaries in the figure below, as well as the pdf of y[n]

conditioned on the event that a[n] = 0.

Notice that the alphabet has a single interior point, a = 0, and two exterior points, a = —A
and a = 2A. Also notice that the decision boundaries are halfway between the elements of
the alphabet.

Let’s first consider the event that a[n] = 0 (i.e., the interior point). Here, we make an error if
yln] < f% or y[n] > A. The probability of y[n] > A, given that a[n] = 0, equals the integral
of pynyjain)(y¥]0) over the region y € (A,00), as illustrated by the right shaded area in the
figure above. Since y[n] = a[n] + e[n] conditioned on a[n] = 0 reduces to y[n| = e[n], the pdf

Pyin]|an] (¥]0) is that of a Gaussian random variable with zero-mean and variance o?:

1 y2
exp | — .
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Thus

Pr {y[n] > A

=0} - /;ﬁexp(—jfg)dy -o(2)  ®

Similarly, the probability that y[n] < A/2, given that a[n] = 0, equals

7A/2 1 y2
= - 4
a[n] 0} - ora? eXP( 203) dy (4)
e (e = 2 (a)
- dy = , 5
/A 12 no? eXP( 207 ) W Q %0, (5)

Pr {y[n] < —%
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using the fact that the zero-mean Gaussian distribution is symmetric around the origin. Note
that (5) was also derived in the lecture. Finally, the total probability of making a decision
error, given that a[n] = 0, equals the probability of crossing the decision boundary to the left
plus the probability of crossing the decision boundary to the right, i.e.,

Pr{error|aln] =0} = Q (f) +Q ( A > : (6)

e 20,

Next, consider the event that a[n] = 2A (i.e., the right edge point). In this case, the pdf
Py[n]|aln] (¥|24) is of interest, since (as in the figure below)

A
Pr{error|an] = 2A} = Pr {y[n] < Ala[n] = QA} = / Py[n)|aln] (Y2D)dy.  (7)

- py[n“a[n](y'A)

Because y[n] = 2A + ¢[n], we know y[n] will be a Gaussian random variable with mean 2A
and variance o2, and thus

1 (y — 24)?
Py[n]|a[n] (y|l2A) = \/W exp (—%‘2 . (8)

Plugging (8) into (7) yields

Pr{error|a[n] = 2A} = /A ! exp <—(1’2A)2> dy (9)
_ /_ :: 2202 exp (— %2;) dy' (10)
Y A (_ %/U)) ay (1)

- of3)

where (10) used the change of variables y' = y — 2A, (11) used the symmetry property, and
(12) took advantage of (3).

Finally, consider the event that a[n] = —A (i.e., the left edge point). Here the pdf py(n)jajn) (¥|—

A) is of interest, since (as in the figure below)

Pr{error|aln] = —A} = Pr {y[n] > _%

n] = —A} (13)

(oo}
:/ Pylnljan] (9] — A)dy. (14)
—A/2
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Because y[n] = —A + ¢[n], we know y[n] will be a Gaussian random variable with mean —A

1 y+ A)?
Pyinllain (Y] —A) = Jamo? exp (—()> . (15)

and variance o2, and thus

This means that

Pr{error|afn] = A} = /_ :2 \/;TTgexp (‘W) dy (16)
_ /A 0/02 \/2%3 exp < (3222) dy' (17)
— (ﬁe) . (18)

where here we made the substitution ¢y’ = y + A.
Putting (6), (12), and (18) together to get the average symbol-error probability:

Pr{error} = Pr{error|a[n] = —A} Pr{a[n] = —A} + Pr{error|a[n] = 0} Pr{a[n] = 0}
+ Pr{error|a[n] = 2A} Pr{a[n] = 2A} (19)

(2@ ) w
- 3ol

(¢) From (2) we see that

NN 0] -
Plugging this into (21) gives
et = 2o S o [N
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(d) The MATLAB code below yielded the following plot. Notice that the performance of the
proposed alphabet is significantly worse than ordinary 3-PAM, and even worse than that of
4-PAM when E{|a[n]|?}/c? > 3, though better than 5-PAM. This is disappointing! Here,
“better” means lower SER for the same noise variance.

% setup -
SNR = logspace(0,2,100);

M = [3,4,5]; o
% calculate SER 10°

SER = zeros(length(M)+1,length(SNR)); .
legend_str = [];

for m=1:length(M), 10°
SER(m,:) = 2*%(M(m)-1)/M(m)*Q(sqrt(3/(M(m)"2-1)*SNR)) ;
legend_str = strvcat(legend_str, [num2str(M(m)),’-PAM’]); & 10°

end;

SER(length(M)+1,:) = 2/3%( Q(sqrt(3/20%SNR))+Q(sqrt(3/5%SNl 1°

legend_str = strvcat(legend_str, [’\{-\Delta,0,2\Delta\}’]) 7

6

% plot 10

handle = loglog(SNR,SER);

legend(handle,legend_str,’Location’,’SouthWest’); 107

grid on; e raoen

ylabel(’SER’) 10 100 1& o
xlabel ("E\{la[n] |"2\}/\sigma_e~2’) E{jaln]}/o?

Note: The code above calls the function Q.m which does Q(x) = erfc(x/v/2)/2.

2. The MATLAB code below yielded the data in the following table.

‘ 2-PAM  4-PAM 8-PAM
experimental SER | 8.3400e-4 0.1181  0.4284
theoretical SER | 7.8270e-4 0.1180  0.4289

Running the routine again yielded slightly different experimental SER values.

% generate symbols

N = 1e3; % # symbols

M = 2; % alphabet size

sig2a = 1; % symbol variance

a = pam(N,M,sig2s); % symbol sequence
Delta = sqrt(12*sig2a/(M"2-1));

% generate error
sig2e = 0.1; % error variance
e = sqrt(sig2e)*randn(1,N);

% make decisions

a+ e;

round( y*sqrt((M~2-1)/12) + (M-1)/2 );
min(max(z, 0), M-1);

ahat = (z - (M-1)/2)/sqrt((M"2-1)/12);

N
wonon

% count errors

err = zeros(1,N);

err(abs(a-ahat)>1e-10)=1;

SERhat = sum(err)/N

SER = 2%(M-1)/M*Q(sqrt(3/(M"2-1)*sig2s/sig2e))

if N>1000, return; end;

% visualize decision making

subplot(211)
plot([0:N-1],e,’.-’,[0,N-1],Delta/2x[1,1],’r’,[0,N-1],-Delta/2%[1,1],°r’);
ylabel(’e[n]’)

subplot (212)

stem([0:N-1] ,err);

ylabel(’errors’)
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3. To understand how the noise variance translates into symbol error variance, we recall the expression
for the variance of the complex-valued error

E{le[nlP’} = oulgl?+ o2l E g opl*,

which we found while pursuing the MMSE equalizer. (Above, D is the end-to-end delay in symbol
intervals.) The ISI term 02| H Tg — dp||? is negligible in this problem because we are using well-

truncated SRRC pulses with a trivial channel. Because ||g||* ~ 1, the noise term equals o2 ||g||> =

2

oz . Finally, assuming that the real-valued part of e[n] accounts for half of its power, we take

2.
02 = LE{|e[n]|*} = 102 as the error variance that affects our decision making.

The MATLAB code below yielded the following constellation diagram, the experimental SER value
0.0252, and the theoretical SER value 0.0228. Running the routine again yielded a slightly different
experimental SER value.

% design SRRC

P = 2; % oversampling factor
alpha = 0.5; % SRRC rolloff param
D = 2; % truncation to [-DT,DT]

g = srrc(D,alpha,P); % SRRC pulse
Ng = length(g);

% generate symbols

N = le4; % # symbols

M = 2; % (sqrt) alphabet size

sig2a = 1; % symbol variance

a = pam(N,M,sig2a); % symbol sequence

% pulse-amplitude modulate

a_up = zeros(1,N*P);

a_up(1l:P:end) = a; % upsampled symbols
m = conv(a_up,g); % PAM

% add complex-valued noise
SRRC (a=0.5) truncated to +2T

sig2w = 0.5; T T T T T T T T T T T
w = [1,j]l*sqrt(sig2w/2)*randn(2,length(m)); 2r 7
vV = mtw; I .

15
% matched-filter demodulate
q = g; Nq = Ng; .
y_up = conv(v,q); % use SRRC again 52
051 -
% remove causal filtering delay
k = [1:P*N]; % desired time indices o
dly = (Ng-1)/2+(Ng-1)/2;% delay due to pulses
y_up = y_up(k+dly); % remove delay
y = y_up(1:P:end); 7% downsample

=

nearest-element decisions

z = round( real(y)*sqrt((M"2-1)/12) + (M-1)/2 );
z = min(max(z, 0), M-1);

ahat = (z - (M-1)/2)/sqrt((M"2-1)/12);

% count errors

err = zeros(1,N);

err (abs(a-ahat)>1e-10)=1;
SERhat = sum(err)/N

% compute theoretical error

H = convmtx(g,Nq); H = H(:,[1:P:end]); Na = size(H,2);
delta = zeros(1,Na); delta(i+dly/P)=1;

sig2e = sig2w/2*norm(q) "2 + sig2a*norm(q*H-delta) "2;
SER = 2*%(M-1)/M*Q(sqrt(3/(M"2-1)*sig2a/sig2e))

% plot constellation diagram
if N>le4, return; end;
figure(2)
plot(real(y_up),imag(y_up),’y’,real(y),imag(y),’.’);
xlabel(’I’); ylabel(’Q’);
title([’SRRC (\alpha=’,num2str(alpha),...

’) truncated to \pm’,num2str(D),’T’])
axis(’equal’);
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