
ECE-501 Introduction to Analog and Digital Communications Winter 2008

Homework #2 Jan. 18, 2008

HOMEWORK SOLUTIONS #2

1. (a) Ideal zero-phase LPF:
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2πBt
= 2B sinc(2Bt). (3)

(b) Say H(f) is the ideal zero-phase LPF, as above. Then we can write the ideal linear-phase

LPF as G(f) = H(f)e−j2πfto . Since we know that h(t) = 2B sinc(2Bt), we can use the fact

that X(f)e−j2πfto

F
←→ x(t− t0) to claim that g(t) = 2B sinc(2B(t− to)).

2. (a) Truncated-sinc LPF:

Ts = 0.001;
t_o = 0.25;
t = 0:Ts:2*t_o;

B = 20;
h = 2*B*sinc(2*B*(t-t_o));

plottf(h,Ts)
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The magnitude response is not perfect in that there is ringing near the cutoff frequency.

(b) firls-designed LPF:

Ts = 0.001;
t_o = 0.25;
Lf = 2*t_o/Ts;

B = 20;
fp = 0.9*B*2*Ts;

fs = 1.1*B*2*Ts;
h = firls(Lf,[0,fp,fs,1],[1,1,0,0])/Ts;

plottf(h,Ts);
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(c) firpm-designed LPF:

Ts = 0.001;
t_o = 0.25;
Lf = 2*t_o/Ts;

B = 20;
fp = 0.9*B*2*Ts;

fs = 1.1*B*2*Ts;
h = firpm(Lf,[0,fp,fs,1],[1,1,0,0])/Ts;

plottf(h,Ts);
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(d) fir2-designed LPF:

Ts = 0.001;
t_o = 0.25;
Lf = 2*t_o/Ts;

B = 20;
fp = 0.9*B*2*Ts;

fs = 1.1*B*2*Ts;
h = fir2(Lf,[0,fp,fs,1],[1,1,0,0])/Ts;
plottf(h,Ts);
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(e) The LPFs designed using the MATLAB built-in routines yield magnitude responses that are

generally much closer to ideal than the truncated-sinc LPF. The passbands from firls and

fir2 are very flat, that from firpm has very small ripples, while that from the truncated-sinc

filter is flat except for severe ringing near the passband edge. The stopbands from firls and

fir2 are essentially zero over the desired range, that of the truncated-sinc filter is also zero

except near the stopband edge, while that from firpm doesn’t quite reach zero, which could

be problematic. The impulse responses of all the filters look pretty similar, except that the

MATLAB built-in LPFs have impulse responses that decay smoothly to zero in comparison

to the truncated-sinc LPF.

3. The original noise waveform and its LPF’ed and HPF’ed versions are shown below, along with the

MATLAB code that designs and implements the filters:

Ts = 0.001;
t_o = 0.25;

Lf = 2*t_o/Ts;
B = 100;

fp = 0.9*B*2*Ts;
fs = 1.1*B*2*Ts;
h_lpf = firls(Lf,[0,fp,fs,1],[1,1,0,0])/Ts;

h_hpf = firls(Lf,[0,fp,fs,1],[0,0,1,1])/Ts;
t_max = 1;

x = randn(1,t_max/Ts);
y_lpf = Ts*conv(h_lpf,x);

y_hpf = Ts*conv(h_hpf,x);
subplot(3,1,1); plottf(x,Ts,’f’);
subplot(3,1,2); plottf(y_lpf,Ts,’f’);

subplot(3,1,3); plottf(y_hpf,Ts,’f’);
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The filtering works as expected: it preserves the input signal over its passband but rejects it over

its stopband.
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4. (a) The approximate Dirac delta and its plottf-approximated Fourier transform are:

Ts = 0.001;

t_max = 3;
t = 0:Ts:t_max;
x = zeros(size(t));

x(1) = 1/Ts;
plottf(x,Ts);
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It is encouraging to see that the frequency magnitude response matches that of F{δ(t)} = 1

(over the frequency range that is plotted by plottf).

(b) The complex exponential and its plottf-approximated Fourier transform are (for tmax = 3):

Ts = 0.001;
t_max = 3;

t = 0:Ts:t_max;
f_o = 9;
x = exp(j*2*pi*f_o*t);

plottf(x,Ts);
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While the basic shape of the frequency magnitude response matches that of F{exp(j2πfot)} =

δ(f − fo), it is impossible to actually plot δ(f − fo) due to its infinite height.

(c) The complex exponential and its plottf-approximated Fourier transform are (for tmax = 5):

Ts = 0.001;

t_max = 5;
t = 0:Ts:t_max;
f_o = 9;

x = exp(j*2*pi*f_o*t);
plottf(x,Ts);
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The difference between the case tmax = 5 and tmax = 3 is that the height of the spike is now 5

rather than 3. It is interesting that changing the length of the time-domain waveform changes

the amplitude in the frequency domain. This behavior can be traced back to equations (1)-(2)

on the homework, which show how the FT is approximated by plottf: as tmax increases, so

does the number of samples N , which causes the sum in (2) to grow proportionally.

P. Schniter, 2008 3


