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Introduction:

Goal: Transmit a message from one location to another.

When message is. . .
continuous waveform → analog comm (e.g., FM radio),
sequence of numbers → digital comm (e.g., mp3 file),

though the sequence of numbers might represent a continuous

waveform (as in the case of mp3 audio).

Typical communication media:
twisted pair wire (e.g., telephoneA)
coaxial cable (e.g., TVA,D, dataD)
fiber optic cable (e.g., ethernetD)
EM waves (e.g., cellular phonesA,D, WiFiD, TVA,D)
water waves (e.g., underwater networkA,D)
power linesA,D

compact discD

hard driveD

magnetic tapeA,D

where A = analog and D = digital.

Note that, whether the message signal is discrete-time or

continuous-time, the transmitted signal is continuous-time!
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Analog Communication:
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• Perfect recovery is impossible in the presence of noise!

Digital Communication:
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· · · 010110· · ·

· · · 010110· · · · · · 3,-1,1,-3· · ·

· · · 3.1,-0.9,1.1,-2.9· · ·

• A digital message is converted to an analog message

coding and pulse-shaping, and then transmitted using

analog modulation. To recover the message, the received

signal is demodulated, sampled, and digitally processed.

• Perfect recovery is possible even in the presence of noise!
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Preview of Comm System Components:

Modulator:

• Translates “baseband” analog signal to “passband”:

1

1/2

ff
− 1

2T
1

2T fc−fc

1/T

where fc is the “carrier frequency.”

• There are two principal motivations for doing this:

1. Often we want to communicate several signals

simultaneously (e.g., TV, radio, voice). It’s difficult or

impossible to do this if they overlap in frequency!

2. Wireless EM transmission/reception is much easier at

higher frequencies, since need antenna length > λ
10 .

(λ = c
fc

is wavelength and c=3e8 m/s speed of light.)
system transmission band λ/10

VHF (TV) 30–300 MHz 1–0.1 m
UHF (TV) 0.3–3 GHz 10–1 cm

cellular 824–960 MHz 3 cm
WiFi 2.4 GHz 1 cm

Notice that practical antenna length determines where

different signal types can be transmitted.
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Coder/Mapper:

• Coder transforms sequence of message bits into an

error-resiliant sequence of coded bits.

• Mapper transforms coded bits into discrete “symbols.”

Ex: If the “symbol alphabet” is {−3,−1, 1, 3} and the

symbol mapping is

bits symbol
00 3
01 -1
10 1
11 -3

, then ASCII text would

be transmitted via

letter ASCII code symbol sequence
a 01 10 00 01 -1 1 -3 -1
b 01 10 00 10 -1 1 -3 1
c 01 10 00 11 -1 1 -3 3
d 01 10 01 00 -1 1 -1 -3
...

...
...

.
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Pulse Shaper:

• Converts symbol sequence into a continuous waveform.

• In linear modulation schemes, the time-n symbol s[n]

scales a nT -delayed version of pulse p(t):

y(t) =
∑

n

s[n]p(t − nT ) “baseband signal”

T = “symbol period”

Ex: Say symbol sequence is [1, 3,−1, 1, 3]. Then

y(t) =
∑

n s[n]p(t − nT )

s[n]p(t − nT ) for n = 0, ..., 4

t

t

t

t

t

t

t

1

1
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p(t) :

p(t − T ) :

p(t − 2T ) :

p(t − 3T ) :

p(t − 4T ) :

T 2T 3T 4T 5T 6T

T 2T 3T 4T 5T 6T
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Preliminaries (Ch.2):

Fourier Transform (FT):

Definition:

W (f) =

∫ ∞

−∞
w(t)e−j2πftdt = F{w(t)}

w(t) =

∫ ∞

−∞
W (f)ej2πftdf = F−1{W (f)}.

Properties:

• Linearity: F{c1w1(t) + c2w2(t)} = c1W1(f) + c2W2(f).

• Real-valued w(t) ⇒
{

conjugate symmetric W (f)
|W (f)| symmetric around f = 0.

“Bandwidth”:

1
2 -power BW

99%-power BW

absolute BW

single-sided BW

double-sided BW

1
1√
2

0 dB

−3 dB

|W (f)| |W (f)|
bandpass signal: lowpass signal:

ff
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Dirac Delta (or “continuous impulse”) δ(·):

An infinitely tall and thin waveform with unit area:

limit

δ(t)

t

that’s often used to “kick” a system and see how it responds.

Key properties:

1. Sifting:

∫ ∞

−∞
w(t)δ(t − q)dt = w(q).

2. Time-domain impulse δ(t) has a flat spectrum:

F{δ(t)} =

∫ ∞

−∞
δ(t)e−j2πftdt = 1 (for all f).

3. Freq-domain impulse δ(f) corresponds to a DC waveform:

F−1{δ(f)} =

∫ ∞

−∞
δ(f)ej2πftdf = 1 (for all t).
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Frequency-Domain Representation of Sinusoids:

Notice from the sifting property that

F−1{δ(f − fo)} =

∫ ∞

−∞
δ(f − fo)e

j2πftdf = ej2πfot.

Thus, Euler’s equations

cos(2πfot) = 1
2e

j2πfot + 1
2e

−j2πfot

sin(2πfot) = 1
2j e

j2πfot − 1
2j e

−j2πfot

and the Fourier transform pair ej2πfot ↔ δ(f − fo) imply that

F{cos(2πfot)} = 1
2δ(f − fo) + 1

2δ(f + fo)

F{sin(2πfot)} = 1
2j δ(f − fo) − 1

2j δ(f + fo).

Often we draw this as

f

|F{cos(2πfot)}| = |F{sin(2πfot)}|
1
2

fo−fo
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Frequency Domain via MATLAB:

Fourier transform requires evaluation of an integral. What do

we do if we can’t define/solve the integral?

1. Generate (rate- 1
Ts

) sampled signal in MATLAB.

2. Plot magnitude of Discrete Fourier Transform (DFT)

using plottf.m (from course webpage).

Square-wave example:

f = 10;

t_max = 2;

Ts = 1/1000;

t = 0:Ts:t_max;

x = sign(cos(2*pi*f*t));

plottf(x,Ts);

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
!1

!0.5

0

0.5

1

time

a
m

p
lit

u
d
e

!500 !400 !300 !200 !100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frequency

m
a
g
n
it
u
d
e

Noise-wave example:

t_max = 1;

Ts = 1/1000;

x = randn(1,t_max/Ts);

plottf(x,Ts);
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Notice that plottf.m only plots frequencies f ∈ [− 1

2Ts

, 1

2Ts

).
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Linear Time-Invariant (LTI) Systems:

An LTI system can be described by either its “impulse

response” h(t) or its “frequency response” H(f) = F{h(t)}.

in time
domain

:

in frequency
domain

:
LTI

system

LTI
system

impulse δ(t)

flat
spectrum

1

h(t)
impulse
response

H(f)
frequency
response

Input/output relationships:

• Time-domain: Convolution with impulse response h(t)

x(t) h(t) y(t) y(t) = h(t) ∗ x(t) =

∫ ∞

−∞
h(t − τ)x(τ)dτ

• Freq-domain: Multiplication with freq response H(f)

X(f) H(f) Y (f) Y (f) = H(f)X(f)

Linear Filtering:

Freq-domain illustration of LPF, BPF, and HPF:

=·

f f

f f

f f

f

f

f

X(f) H(f) Y (f)
LPF

BPF

HPF
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Lowpass Filters:

Ideal non-causal LPF (using sinc(x) := sin(πx)
πx ):

B0 0−B
f t1

2B
1
B− 1

2B− 1
B

h(t)H(f)
1 2B

H(f) =







1 |f | ≤ B

0 |f | > B

F←→ h(t) = 2B sinc(2Bt)

Ideal LPF with group-delay to:

B0−B
f t

t0

h(t)|H(f)|
1 2B 1

2B

H(f) =







e−j2πft0 |f | ≤ B

0 |f | > B

F←→ h(t) = 2B sinc
(

2B(t − t0)
)

A causal linear-phase LPF with group-delay to:

B0−B
f t

t0 2t0

h(t)|H(f)|
1 2B 1

2B

symmetry around center yields linear phase

but MATLAB can give better causal linear-phase LPFs. . .
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In MATLAB, generate 1
Ts

-sampled LPF impulse response via

h = firls(Lf, [0,fp,fs,1], [G,G,0,0])/Ts;

where. . .

0 fp fs 1
0

G

f
1/(2Ts)

Lf+1 = impulse response length

{0, fp}, {fs, 1} = normalized freq pairs

{G, G}, {0, 0} = corresp. magnitude pairs

The commands firpm and fir2 have the same interface, but

yield slightly different results (often worse for our apps).

In MATLAB, perform filtering on 1
Ts

-sampled signal x via

y = Ts*filter(h,1,x); or y = Ts*conv(h,x);
t_max = 3; Ts = 1/1000;

x = randn(1,t_max/Ts);

h = firls(100,[0,0.2,0.4,1],[1,1,0,0])/Ts;

y = Ts*filter(h,1,x);

subplot(3,1,1);

plottf(x,Ts,’f’);

ylabel(’|X(f)|’)

subplot(3,1,2);

plottf(h,Ts,’f’);

ylabel(’|H(f)|’)

subplot(3,1,3);

plottf(y,Ts,’f’);

ylabel(’|Y(f)|’)
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Important: The routines firls,firpm,fir2 generate causal

linear-phase filters with group delay = Lf
2 samples. Thus, the

filtered output y will be delayed by Lf
2 samples relative to x.
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