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For a trivial channel (i.e., h[k] = d[k]), we know that the use of square-root raised-
cosine (SRRC) pulses at transmitter and receiver suppresses inter-symbol interference
(ISI) and maximizes the received signal-to-noise ratio (SNR) in the presence of white
noise {w[k]}. With a non-trivial channel, however, we need to re-visit the design of the
receiver pulse {¢[k]}, which is called an “equalizer” when it tries to compensate for the
channel.

Here we design the minimum mean-squared error (MMSE) equalizer coefficients {q[k]}
assuming that the input symbols {a[n]} and the noise {w[k]} are white random sequences
that are uncorrelated with each other. This means that

E{a[ma*[n]} = o3d[m —n] (1)
E{w[k]a*[l]} = oy,d[k 1] (2)
Ela[m]a*[l]} =0 (3)

for some positive variances o2 and o2. For practical implementation, we will consider a

causal equalizer with length N, so that ¢[k] = 0 for k¥ < 0 and k¥ > N,. To simplify the
derivation, we combine the transmitted pulse g[k] and the complex-baseband channel A[k]
into the “effective channel” .

hlk] := g[k] = h[k]

and assume that this effective channel is causal with finite length Nj,. Throughout, we
assume that the effective channel coefficients {h[k]}, as well as the variances o2 and o2,
are known. Learning these quantities is a separate (and often challenging) problem.
Notice that, because the effective channel is causal and length N, it can delay the
upsampled input signal a;[k] by between 0 and N, — 1 samples. Since it is difficult to
compensate for this delay with a causal equalizer, we will allow for the presence of end-
to-end system delay. Thus, our goal is to make y[m| ~ a[m — A] for some integer A > 0.
Throughout the design, we assume that A has been chosen for us, although eventually

we shall see how to optimize A.



Recall that if y[m| = a[m — A], then we will be able to make perfect decisions on the
symbols a[m| from the output sequence y[m]. However, we would never expect a perfect
output in the presence of noise. Thus, we take as our objective the minimization of the
error signal

elm| .= ylm| — a[m — Al.

In particular, we minimize the mean squared error (MSE)
£ = E{le[m]|*}.

We saw earlier that, if e[m] can be modelled as a zero-mean Gaussian random variable
(with variance ¢ = &), then the symbol error rate (SER) decreases as £/0? decreases.
Thus, there is good reason to minimize &.

Our eventual goal is to derive an expression for the MSE £ from which the equalizer
coefficients can be optimized. But first we notice that, due to the stationary of {a[m]}
and {w[k]} (i.e., the time-invariance of their statistics) and the LTT nature of our filters,
the statistics of {e[m]} will also be time invariant, allowing us to write & = E{|e[0]|*}.
This allows us to focus on e[0] instead of e[m], which simplifies the development.

The next step is then to find an expression for e[0]. From the block diagram,

el0] = y[0] —a[-A] (4)

Ng—1

ofk] = @k + Y aifl]alk 1 (6)
= alk]+ Y aln]hlk —nP), (7)

where in (7) we used the fact that ai[l] = 0 when [ is not a multiple of P and that
a;[nP] = a[n]. Though (7) is written with an infinite summation, it turns out that most
values of n will not contribute. Due to the causality and length-N,, of h[n], the values of
n which lead to contributions to v[k]| ensure that

0 < k—nP < N,—1 foratleastonek e {0,—-1,...,—N,+ 1} (8)
k Ny,—1—k
5 > n > —hT for at least one k € {0, —1,...,—N, —1}(9)
Np+ N, —2
s 0> n > _LH—QJ (10)
P
::]\7;—1

where N, denotes the number of contributing symbols. In other words,

ok = w@lk]+ Y aln]hlk —nP]. (11)

n=1—Ng

2



Next we use a vector formulation to simplify the development. We start by rewriting

o[0]
o) = o o] o a -] | Y| —a-a) (12)
— o[l — N,
where, for [ € {0,..., N, — 1},
a[0]
o[-1] = @[+ [p[-] h[-l+P] h[=l+ (N, — 1) P]] a[fl] (13)
e all — N,]
=
so that
AL
_ | +| e (14)
o1 - N, afl- N [mh,
= -m

In (14), the row vectors {Qfl}f\fo_l were combined to form the N, x N, matrix H. Through-
out, we use underlined lower-case letters to represent column vectors, and underlined
upper-case letters to represent matrices. Plugging (14) into (12), we get

0] = ¢"(w+ Ha) - a[-A). (15)

Defining § as the column vector with a 1 in the A" place! and 0’s elsewhere, we can
write 0ha = a[—A], which yields the final expression for the time-0 error:

el0] = ¢ "(w+ Ha) — dpa (16)
= q'w+(¢"H - d})a (17)

Next, we derive an expression for the MSE £. Notice that

£ = E{le[0]]"} = E{e[O]e*[O]} (18)
= {[q w+ (¢"H — 64)a [_%Hfﬂ—éi)g}"} (19)
= B{[¢"w+ (¢ H - 58)a) [w'q +a"(H g - 6,)]'} (20)
= {[ T]—] 5T } [QHQ*+QH<ﬂH_*_éA)}}7 (21)

!Note that A = 0 indicates the first place, so that §, = [1,0,...,0].
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where in (20) we transposed the scalar quantities on the right (e.g., ¢'w = (¢"w)" =
w’q) and in (21) we distributed the complex conjugate, using the “Hermitian transpose”
notation (-) := (-)T*. Expanding (21) gives
E = E{gTng*} +E{QTMH(EHQ* _éA)}
+E{(¢"H - d))awq"} + E{(¢"H — 35)aa" (H"¢" — A)} (22)
= ¢"Efww"}¢" +¢" E{wad"} (H"g" = da)
+(¢"H — 67)E{aw™} ¢" + (¢"H — 67) E{ad" } (H"q" —5,),  (23)
where in (23) we moved the non-random quantities through the expectations.
Equation (23) can be simplified using the statistical properties of the random vectors

a and w, which were each constructed from white sequences that are uncorrelated with
each other. In particular, notice that

E{ww"}
([ alo]
_ W= g -
= E 5 [@*[0] w*[-1] -+ @[l — N (24)
\ _117[1 - N,
(| @l (o] @[0)ar[~1] @(0Jr[L = N
-y w[—1]w*[0] w[—1]w*[—1] w[—1]w*[1 — N, (25)
| {01 = N 0] @l = N [-1] - @l = N1 - N
E{w[0]w[0]} E{w[0]w*[-1]} E{w[0]@[1 — N,J}
B{o[-1]e*0]}  E{w[-1jw[-1]} E{w[-1]w*[l — N,J}
- . . : (20
E{w[l = N Jo[0]} E{w[l = NjJo*[=1]} -+ E{w[l = NoJ*[1 = N,J}
= a matrix whose (m,n)" entry equals E{w[—m|w*[-n]} = ¢26[n — m] (27)
= U?UL (28)
where [ denotes the identity matrix. The same reasoning can be used to show
E{aa"} = oI
Similarly,
E{aw™} = a matrix whose (m,n)"™ entry equals E{a[—m]@*[-n]} =0  (29)
= 0 (30)
and E{wa} = (E{aw!}) = 07 = 0. Applying these relationships to (23), we get
£ = o4d' ¢ +ou(q"H— 7)) (H"q" —3d,) (31)
oullal® + ol L g — oAl (32)
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which shows that the MSE consists of o2 ||¢||> (due to noise) plus o2||[H"q — dA||* (due
to ISI and error in the end-to-end gain). In general, minimizing the sum of these two
components requires making a tradeoff between them. For example, setting ¢ = 0 would
cancel the noise component but result in an end-to-end gain of zero. Similarly, choosing
q such that I Tq = 6, (if this is even possible) can amplify the noise.

To proceed further, we rewrite the MSE as follows.

E = (J I+ 0?HH") ¢* — ¢" Hé 02 =025 H " + 02 540 (33)
v — T N—— - N~
= A =b =1
= ¢'A¢ —q'b-b"q + 0. (34)

By completing-the-square,? the MSE expression (34) can be put into a convenient form,
from which the MSE-minimizing ¢* will become readily apparent. To do this, it is essential

that the matrix A can® be decomposed as A = BB, so that

5 — QTBBHQ _QTQ_QHQ*+O_§ (35)
= ¢"BB"¢" —¢"BB b - "B B¢ + o2 (36)
= (("B-v"B "\ (B"¢ —B7'0) - b" B "B7'b+ o2 (37)
q q : ,
— A1
= B¢ =B 0" (B"¢" - B b)) +07 —b"AT'D (38)
ZVO E;in

Note that the equalizer parameters only affect the first term in (38), which is non-negative.
So, to minimize £ via choice of g, the best we can do is to set the first term in (38) to
zero, at which point the second term specifies the minimum possible €. Thus, the MSE-
minimizing equalizer parameters are those which give B ¢. =B 1y, e,

G = BB = A7 = (A4 ) 0t (3
o H o
= (U—Zl—i-ﬂ ) Hop (40)

and the minimum MSE is

gmin = (2L - éHA_lb (41)
= 02— 020 H" (021 + 0c?HH") ' H{ \0? (42)

-1
— (1—5THH( WL+HHH) [MA). (43)
O’

a

2For scalar quantities, this means writing 22 — 2zy + 2 = (z — y)? — y? + 2.

3To see this, we can use the singular value decomposition (SVD) H = USV a , where U and V are
unitary and S is non-negative diagonal, to write A = (ain—i—agUiSVHLSUH) = Q(Uful—i—agﬁz)QH =
UX2UM . Thus, if we define B := UX, then A = BB Note that B is guaranteed invertible when 2, > 0.



Finally, we can see how the delay A can be optimized. Notice from (43) that the term

o2 !
éﬁﬂH (ﬁl + HHH) Hop
-1
is simply the A" diagonal element of the matrix H <Z—%[ + HHY ) H, and that &y
decreases as this term gets bigger. Thus, the MSE-minimizing A is simply the index of
) —1
the maximum diagonal element of the matrix H (‘Z_—“Q’l + HHY ) H.



