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For a trivial channel (i.e., h̃[k] = δ[k]), we know that the use of square-root raised-
cosine (SRRC) pulses at transmitter and receiver suppresses inter-symbol interference
(ISI) and maximizes the received signal-to-noise ratio (SNR) in the presence of white
noise {w̃[k]}. With a non-trivial channel, however, we need to re-visit the design of the
receiver pulse {q[k]}, which is called an “equalizer” when it tries to compensate for the
channel.

Here we design the minimum mean-squared error (MMSE) equalizer coefficients {q[k]}
assuming that the input symbols {a[n]} and the noise {w̃[k]} are white random sequences
that are uncorrelated with each other. This means that

E{a[m]a∗[n]} = σ2

aδ[m − n] (1)

E{w̃[k]w̃∗[l]} = σ2

wδ[k − l] (2)

E{a[m]w̃∗[l]} = 0 (3)

for some positive variances σ2
a and σ2

w. For practical implementation, we will consider a
causal equalizer with length Nq, so that q[k] = 0 for k < 0 and k ≥ Nq. To simplify the
derivation, we combine the transmitted pulse g[k] and the complex-baseband channel h̃[k]
into the “effective channel”

h[k] := g[k] ∗ h̃[k]

and assume that this effective channel is causal with finite length Nh. Throughout, we
assume that the effective channel coefficients {h[k]}, as well as the variances σ2

a and σ2
w,

are known. Learning these quantities is a separate (and often challenging) problem.
Notice that, because the effective channel is causal and length Nh, it can delay the

upsampled input signal a↑[k] by between 0 and Nh − 1 samples. Since it is difficult to
compensate for this delay with a causal equalizer, we will allow for the presence of end-
to-end system delay. Thus, our goal is to make y[m] ≈ a[m−∆] for some integer ∆ ≥ 0.
Throughout the design, we assume that ∆ has been chosen for us, although eventually
we shall see how to optimize ∆.
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Recall that if y[m] = a[m − ∆], then we will be able to make perfect decisions on the
symbols a[m] from the output sequence y[m]. However, we would never expect a perfect
output in the presence of noise. Thus, we take as our objective the minimization of the
error signal

e[m] := y[m] − a[m − ∆].

In particular, we minimize the mean squared error (MSE)

E := E{|e[m]|2}.

We saw earlier that, if e[m] can be modelled as a zero-mean Gaussian random variable
(with variance σ2

e = E), then the symbol error rate (SER) decreases as E/σ2
a decreases.

Thus, there is good reason to minimize E .
Our eventual goal is to derive an expression for the MSE E from which the equalizer

coefficients can be optimized. But first we notice that, due to the stationary of {a[m]}
and {w̃[k]} (i.e., the time-invariance of their statistics) and the LTI nature of our filters,
the statistics of {e[m]} will also be time invariant, allowing us to write E = E{|e[0]|2}.
This allows us to focus on e[0] instead of e[m], which simplifies the development.

The next step is then to find an expression for e[0]. From the block diagram,

e[0] = y[0] − a[−∆] (4)

=

Nq−1
∑

l=0

q[l]ṽ[−l] − a[−∆] (5)

ṽ[k] = w̃[k] +
∞∑

l=−∞

a↑[l]h[k − l] (6)

= w̃[k] +
∞∑

n=−∞

a[n]h[k − nP ], (7)

where in (7) we used the fact that a↑[l] = 0 when l is not a multiple of P and that
a↑[nP ] = a[n]. Though (7) is written with an infinite summation, it turns out that most
values of n will not contribute. Due to the causality and length-Nh of h[n], the values of
n which lead to contributions to ṽ[k] ensure that

0 ≤ k − nP ≤ Nh − 1 for at least one k ∈ {0,−1, . . . ,−Nq + 1} (8)

⇔
k

P
≥ n ≥ −

Nh − 1 − k

P
for at least one k ∈ {0,−1, . . . ,−Nq − 1}(9)

⇔ 0 ≥ n ≥ −

⌊
Nh + Nq − 2

P

⌋

︸ ︷︷ ︸

:= Na − 1

, (10)

where Na denotes the number of contributing symbols. In other words,

ṽ[k] = w̃[k] +
0∑

n=1−Na

a[n]h[k − nP ]. (11)
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Next we use a vector formulation to simplify the development. We start by rewriting
(5) as

e[0] =
[
q[0] q[1] · · · q[Nq − 1]

]

︸ ︷︷ ︸

:= qT








ṽ[0]
ṽ[−1]

...
ṽ[1 − Nq]







− a[−∆], (12)

where, for l ∈ {0, . . . , Nq − 1},

ṽ[−l] = w̃[−l] +
[
h[−l] h[−l + P ] · · · h[−l + (Na − 1)P ]

]

︸ ︷︷ ︸

:= hT
−l








a[0]
a[−1]

...
a[1 − Na]








︸ ︷︷ ︸

:= a

(13)

so that







ṽ[0]
ṽ[−1]

...
ṽ[1 − Nq]








=








w̃[0]
w̃[−1]

...
w̃[1 − Nq]








︸ ︷︷ ︸

:= w

+








hT
0

hT
−1

...
hT

1−Nq








︸ ︷︷ ︸

:= H

a. (14)

In (14), the row vectors {hT
−l}

Nq−1

l=0
were combined to form the Nq×Na matrix H. Through-

out, we use underlined lower-case letters to represent column vectors, and underlined
upper-case letters to represent matrices. Plugging (14) into (12), we get

e[0] = qT (w + Ha) − a[−∆]. (15)

Defining δ∆ as the column vector with a 1 in the ∆th place1 and 0’s elsewhere, we can
write δT

∆
a = a[−∆], which yields the final expression for the time-0 error:

e[0] = qT (w + Ha) − δT
∆
a (16)

= qT w + (qT H − δT
∆
)a. (17)

Next, we derive an expression for the MSE E . Notice that

E = E{|e[0]|2} = E{e[0]e∗[0]} (18)

= E
{[

qT w + (qT H − δT
∆
)a
] [

qT w + (qT H − δT
∆
)a
]∗
}

(19)

= E
{[

qT w + (qT H − δT
∆
)a
] [

wT q + aT (HT q − δ∆)
]∗
}

(20)

= E
{[

qT w + (qT H − δT
∆
)a
] [

wHq∗ + aH(HHq∗ − δ∆)
]}

, (21)

1Note that ∆ = 0 indicates the first place, so that δ
0

= [1, 0, . . . , 0]T .
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where in (20) we transposed the scalar quantities on the right (e.g., qT w = (qT w)T =

wT q) and in (21) we distributed the complex conjugate, using the “Hermitian transpose”

notation (·)H := (·)T∗. Expanding (21) gives

E = E
{
qT wwHq∗

}
+ E

{
qT waH(HHq∗ − δ∆)

}

+ E
{
(qT H − δT

∆
)awHq∗

}
+ E

{
(qT H − δT

∆
)aaH(HHq∗ − δ∆)

}
(22)

= qT E
{
wwH

}
q∗ + qT E

{
waH

}
(HHq∗ − δ∆)

+ (qT H − δT
∆
) E
{
awH

}
q∗ + (qT H − δT

∆
) E
{
aaH

}
(HHq∗ − δ∆), (23)

where in (23) we moved the non-random quantities through the expectations.
Equation (23) can be simplified using the statistical properties of the random vectors

a and w, which were each constructed from white sequences that are uncorrelated with
each other. In particular, notice that

E
{
wwH

}

= E














w̃[0]
w̃[−1]

...
w̃[1 − Nq]








[
w̃∗[0] w̃∗[−1] · · · w̃∗[1 − Nq]

]







(24)

= E














w̃[0]w̃∗[0] w̃[0]w̃∗[−1] · · · w̃[0]w̃∗[1 − Nq]
w̃[−1]w̃∗[0] w̃[−1]w̃∗[−1] · · · w̃[−1]w̃∗[1 − Nq]

...
...

. . .
...

w̃[1 − Nq]w̃
∗[0] w̃[1 − Nq]w̃

∗[−1] · · · w̃[1 − Nq]w̃
∗[1 − Nq]














(25)

=








E{w̃[0]w̃∗[0]} E{w̃[0]w̃∗[−1]} · · · E{w̃[0]w̃∗[1 − Nq]}
E{w̃[−1]w̃∗[0]} E{w̃[−1]w̃∗[−1]} · · · E{w̃[−1]w̃∗[1 − Nq]}

...
...

. . .
...

E{w̃[1 − Nq]w̃
∗[0]} E{w̃[1 − Nq]w̃

∗[−1]} · · · E{w̃[1 − Nq]w̃
∗[1 − Nq]}







(26)

= a matrix whose (m,n)th entry equals E{w̃[−m]w̃∗[−n]} = σ2

wδ[n − m] (27)

= σ2

wI, (28)

where I denotes the identity matrix. The same reasoning can be used to show

E{aaH} = σ2

aI.

Similarly,

E{awH} = a matrix whose (m,n)th entry equals E{a[−m]w̃∗[−n]} = 0 (29)

= 0, (30)

and E{waH} = (E{awH})H = 0H = 0. Applying these relationships to (23), we get

E = σ2

wqT q∗ + σ2

a(q
T H − δT

∆
)(HHq∗ − δ∆) (31)

= σ2

w‖q‖
2 + σ2

a‖H
T q − δ∆‖

2, (32)
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which shows that the MSE consists of σ2
w‖q‖

2 (due to noise) plus σ2
a‖H

T q − δ∆‖
2 (due

to ISI and error in the end-to-end gain). In general, minimizing the sum of these two
components requires making a tradeoff between them. For example, setting q = 0 would
cancel the noise component but result in an end-to-end gain of zero. Similarly, choosing
q such that HT q = δD (if this is even possible) can amplify the noise.

To proceed further, we rewrite the MSE as follows.

E = qT (σ2

wI + σ2

aHHH)
︸ ︷︷ ︸

:= A

q∗ − qT Hδ∆σ2

a
︸ ︷︷ ︸

:= b

−σ2

aδ
T
∆
HHq∗ + σ2

a δT
∆
δ∆

︸ ︷︷ ︸

= 1

(33)

= qT Aq∗ − qT b − bHq∗ + σ2

a. (34)

By completing-the-square,2 the MSE expression (34) can be put into a convenient form,
from which the MSE-minimizing q∗ will become readily apparent. To do this, it is essential

that the matrix A can3 be decomposed as A = BBH , so that

E = qT BBHq∗ − qT b − bHq∗ + σ2

a (35)

= qT BBHq∗ − qT BB−1b − bHB−HBHq∗ + σ2

a (36)

= (qT B − bHB−H)(BHq∗ − B−1b) − bH B−HB−1

︸ ︷︷ ︸

= A−1

b + σ2

a (37)

= (BHq∗ − B−1b)H(BHq∗ − B−1b)
︸ ︷︷ ︸

≥ 0

+ σ2

a − bHA−1b
︸ ︷︷ ︸

Emin

. (38)

Note that the equalizer parameters only affect the first term in (38), which is non-negative.
So, to minimize E via choice of g, the best we can do is to set the first term in (38) to
zero, at which point the second term specifies the minimum possible E . Thus, the MSE-
minimizing equalizer parameters are those which give BHq∗

min
= B−1b, i.e.,

q∗
min

= B−HB−1b = A−1b = (σ2

wI + σ2

aHHH)−1Hδ∆σ2

a (39)

=

(
σ2

w

σ2
a

I + HHH

)−1

Hδ∆ (40)

and the minimum MSE is

Emin = σ2

a − bHA−1b (41)

= σ2

a − σ2

aδ
T
∆
HH(σ2

wI + σ2

aHHH)−1Hδ∆σ2

a (42)

= σ2

a

(

1 − δT
∆
HH

(
σ2

w

σ2
a

I + HHH

)−1

Hδ∆

)

. (43)

2For scalar quantities, this means writing x2 − 2xy + z = (x − y)2 − y2 + z.
3To see this, we can use the singular value decomposition (SVD) H = USV H , where U and V are

unitary and S is non-negative diagonal, to write A = (σ2

w
UUH +σ2

a
USV HV SUH) = U(σ2

w
I+σ2

a
S2)UH =

UΣ2UH . Thus, if we define B := UΣ, then A = BBH . Note that B is guaranteed invertible when σ2

w
> 0.
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Finally, we can see how the delay ∆ can be optimized. Notice from (43) that the term

δT
∆
HH

(
σ2

w

σ2
a

I + HHH

)−1

Hδ∆

is simply the ∆th diagonal element of the matrix HH
(

σ2
w

σ2
a

I + HHH
)−1

H, and that Emin

decreases as this term gets bigger. Thus, the MSE-minimizing ∆ is simply the index of

the maximum diagonal element of the matrix HH
(

σ2
w

σ2
a

I + HHH
)−1

H.
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