ECE-501

HOMEWORK ASSIGNMENT #8

Due Fri. Mar. 7, 2008 (in class)

- 1. Say that your project partner suggests to use the symbol alphabet $\{-\Delta, 0, 2\Delta\}$ to send data in a communication system whose outputs are well modeled by y[n] = a[n] + e[n], where a[n] is the data symbol and e[n] is real-valued Gaussian error with zero-mean and variance σ_e^2 . Assuming a data sequence such that the alphabet entries are chosen with equal probability...
 - (a) Give an expression for the symbol power $E\{|a[n]|^2\}$. (*Hint:* Notice that $a[n] = -\Delta$ with probability 1/3, a[n] = 0 with probability 1/3, and $a[n] = 2\Delta$ with probability 1/3. So, what is the average value of $|a[n]|^2$?)
 - (b) Give an expression for the symbol error rate (SER) of nearest-element decisions in terms of Δ , σ_e^2 , and the Q function.
 - (c) Using the answer from part (a), rewrite the SER expression from (b) so that it depends on the $E\{|a[n]|^2\}$ instead of Δ .
 - (d) Based on your answer from part (c), how does the SER of the proposed scheme compare to that of 3-PAM, 4-PAM, and 5-PAM for the same E{|a[n]|²}/σ_e²? To investigate this, plot the SER versus E{|a[n]|²}/σ_e² ∈ [1,100] on a log-log scale. (*Hint:* Generate the values of E{|a[n]|²}/σ_e² using logspace and plot using loglog.)
- 2. For the 2-PAM, 4-PAM, and 8-PAM alphabets, write a MATLAB routine that makes nearestelement decisions from the observed samples y[n] = a[n] + e[n] and returns the calucated symbol error rate (by counting the number of decision errors) as well as the theoretical error rate (via erfc). Here, $\{a[n]\}_{n=0}^{N-1}$ are symbols generated using the pam command and $\{e[n]\}_{n=0}^{N-1}$ are Gaussian errors generated using¹ randn. In all cases, use $\sigma_a^2 = 1$, $\sigma_e^2 = 0.1$, and $N = 1 \times 10^6$. Present your results in table form:

	2-PAM	4-PAM	8-PAM
experimental SER	•	٠	٠
theoretical SER	•	•	•

Hint: To avoid slow MATLAB code, I suggest to make decisions simultaneously on the entire *vector* of outputs, rather than on each output y[n] separately (in a for loop). This can be done using the round command (in conjunction with min and max to handle the edge points).

¹The command randn produces zero-mean white Gaussian noise with unit variance. For variance- σ_e^2 noise, simply scale the output of randn by $\sqrt{\sigma_e^2}$.

3. While the previous problem used the simplified model y[n] = a[n] + e[n], we now take y[n] to be the output of the digital communication system illustrated below, which experiences a noisy but otherwise trivial channel (i.e., $\tilde{h}[k] = \delta[k]$). Assume oversampling factor P = 2, SRRC pulses

with parameter $\alpha = 0.5$ that are truncated to the interval [-2T, 2T], a unit-variance BPSK (i.e., 2-PAM) symbol sequence of length $N = 1 \times 10^4$, and white complex-baseband² noise $n_z[k]$ with variance $\sigma_w^2 = 0.5$.

- (a) Modify your constellation-diagram code from the previous homework assignment to include the complex-baseband noise $n_z[k]$, and plot the constellation diagram from $y_{\uparrow}[k]$.
- (b) Incorporating the code you wrote in the previous problem, calculate the experimental SER (based on symbol decisions from y[n]) as well as the theoretical SER. When calculating the theoretical SER, use $\sigma_w^2/2$ for the variance of the real-valued noise component (in place of σ_e^2).

²The real and imaginary noise components should be generated separately, each with variance $\sigma_w^2/2$, using randn.