
ECE-501 Introduction to Analog and Digital Communications Winter 2008

Homework #5 Feb. 8, 2008

HOMEWORK ASSIGNMENT #5

Due Fri. Feb. 15, 2008 (in class)

Reading:

1. Ch. 3.8, 8.1, 8.2, 8.6-8.8, 8.10.

Problems:

1. As discussed in lecture, the autocorrelation Rx(τ) of a wide-sense stationary1 random signal x(t)

specifies how similar, on average, the sample x(t) is to the sample x(t − τ):

Rx(τ) = E{x(t)x∗(t − τ)}.

Above, E{·} denotes the “expectation” or statistical average, the ∗ denotes the complex conjugate

(since we allow x(t) to be complex-valued), and τ is known as the “lag.” Notice that Rx(0) =

E{|x(t)|2} specifies the variance of x(t). The power spectral density Sx(f) of random signal x(t)

Sx(f) =

∫
∞

−∞

Rx(τ)e−j2πfτdτ,

measures how much average power the signal has versus frequency f . The autocorrelation and

PSD form a Fourier transform pair.

A “white” random signal has an autocorrelation of the form N0δ(τ), where N0 is some positive

constant and δ(τ) is the Dirac delta, and a PSD that is constant over f with value N0. In the

lecture, we derived the following important result: when a white random signal x(t) is filtered by

a (non-random) filter with impulse response h(t):

h(t)x(t) y(t)

the output y(t) is a random signal with autocorrelation

Ry(τ) = N0

∫
∞

−∞

h(t)h∗(t − τ)dt (1)

and PSD

Sy(f) = N0|H(f)|2. (2)

1Here, “wide-sense stationary” (WSS) means that the mean and correlation are invariant to time t. We will exclusively
consider WSS random signals in ECE-501.
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Now say that x(t) is a random signal with generic autocorrelation Rx(τ) and y(t) is generated by

filtering x(t) with h(t), as before.

(a) Show that

Ry(τ) =

∫
∞

−∞

∫
∞

−∞

h(v)h∗(u)Rx(τ + u − v)dvdu.

(Hint : Use the same tricks used to establish (1).)

(b) Show that Sy(f) = |H(f)|2Sx(f). (Hint : Use the same tricks used to establish (2).)

2. In this problem, you will experiment with the complex-baseband equivalent channel in MATLAB.

Throughout the problem, assume sampling rate T−1

s = 10 MHz.

(a) Consider a 3-path channel with the following parameters:

delay gain
0µs 1

0.4µs -0.99
3µs 0.2

. Create a causal

sampled version of the channel’s impulse response h(t) and evaluate its Fourier transform

magnitude using plottf. I suggest zero-padding the impulse response to tmax = 100µsec.

(The amount of zero-padding affects the resolution of the frequency response plot.)

Careful : If you get an error message like “Attempted to access ***; index must be a

positive integer or logical”, it may be that you are trying to specify an integer location

using a floating-point number that MATLAB does not recognize as an integer due to numerical

precision issues. After verifying that the location is as you intended, simply use the round

function to convert it to an integer.

(b) Now you will generate the bandpass equivalent hbp(t) of the wideband channel h(t) above.

Assume a transmission bandwidth of 2W = 1 MHz centered at fc = 2.5 MHz. To cre-

ate the bandpass equivalent, filter the wideband channel with an firls-designed band-

pass filter B(f) with group delay tb = 100Ts and the following magnitude response spec:

0

0.95(fc−W )

fc−W fc+W

1.05(fc+W )

0.5T−1

s

f [Hz]

1

Plot the frequency response magnitude of hbp(t) via plottf. How does the bandpass equiva-

lent channel compare to the wideband channel?

(c) Now you will generate the complex baseband equivalent channel h̃(t). Recalling that hbp(t) =

2Re{h̃(t)ej2πfct}, the easiest way of creating h̃(t) is via

h̃(t) = LPF{hbp(t)e
−j2πfct}

where the LPF is the standard one we use in our demodulators, i.e., with passband edge at W

Hz and stopband edge at 2fc − W Hz. To design the LPF, I suggest using fir2 with group

delay tLPF = 10Ts. Plot the frequency response magnitude of h̃(t) via plottf. How does

the complex baseband equivalent channel compare to the passband equivalent and wideband

channels?
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(d) Next you will verify that the complex-baseband channel model is in fact “equivalent” to the

original wideband channel model. To start, generate a real-valued random message signal

m(t) with length tmax = 100µ sec and single-sided bandwidth W , just as you have done in

previous homeworks.

(e) AM-modulate the message at carrier frequency fc, filter it using the wideband channel h(t),

and AM-demodulate the (noiseless) channel output x(t). In other words, implement the block

diagram below (where, for AM, m̃(t) = m(t) and Re{ṽ(t)} = v(t)):

m̃(t)
s(t) x(t)

ṽ(t)

ej2πfct 2e−j2πfct

h(t) LPFRe

∼∼

××

Plot the recovered signal v(t) via plottf, and superimpose the original message m(t) using

a dashed red line. How does v(t) compare to m(t)?

(Hint : To make sure everything is working properly, test your code using a single-path unit-

gain version of h(t), for which v(t) should be a delayed version of m(t).)

(f) Now repeat the simulation of modulation/propagation/demodulation using the complex base-

band equivalent channel h̃(t), as illustrated in the block diagram below.

m̃(t) ṽ(t)h̃(t)

Again, plot Re{ṽ(t)} via plottf, and superimpose the original message m(t) using a dashed

red line. How does this plot compare to that of part (b)? Provide an explanation for any

differences that you see.
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