
ECE-501 Introduction to Analog and Digital Communications Winter 2008

Homework #2 Jan. 11, 2008

HOMEWORK ASSIGNMENT #2

Due Fri. Jan. 18, 2008 (in class)

Reading:

1. 2.6-2.7, though the sections on Paley-Wiener Criterion, Pulse Response of Ideal LPFs, and Ap-

proximation of Ideal LPFs are optional.

2. Ch. 2.10-2.12, though the sections on Fast Fourier Transform Algorithms and Computation of the

IDFT are optional.

Problems:

1. (a) Prove that the ideal (zero-phase) LPF has a sinc impulse response:

H(f) =

{

1 |f | ≤ B

0 |f | > B

F
←→ h(t) = 2B sinc(2Bt)

(b) Prove that the ideal linear-phase LPF has a delayed sinc impulse response:

G(f) =

{

e−j2πfto |f | ≤ B

0 |f | > B

F
←→ g(t) = 2B sinc(2B(t− to))

(Hint: Use the result of part (a) with FT property 5 from Haykin.)

2. In this problem you will use MATLAB to study causal linear-phase LPFs.

(a) One way to design a causal linear-phase LPF is to truncate the to-shifted sinc impulse response

h(t) = 2B sinc(2B(t− to))

so that h(t) = 0 for t < 0 and t > 2to. For a single-sided bandwidth of B = 20 Hz and an

impulse response length of 2to = 0.5 seconds, generate a Ts = 0.001-sampled version of this

impulse response in MATLAB and use plottf.m to plot the impulse and frequency magnitude

responses. Comment on the non-ideality of the magnitude response of this filter.

(b) Another way to generate a causal linear-phase LPF is to use MATLAB’s built-in filter design

routines. Here you will use firls.m to repeat the filter design task in part (a). As described

in the lecture, firls is used as follows:

h = firls(Lf, [0,fp,fs,1], [G,G,0,0])/Ts;

0 fp fs 1
0

G

f
1/(2Ts)

Lf+1 = impulse response length

{0, fp}, {fs, 1} = normalized freq pairs

{G, G}, {0, 0} = corresp. magnitude pairs

P. Schniter, 2008 1



For a fair comparison with the truncated-sinc design of part (a), use the same values of to,

Ts, and passband gain, and set the passband and stopband cutoffs to be 0.9B and 1.1B Hz,

respectively, for the same B. (Hint: This implies Lf = 2to/Ts and G = 1. Also, don’t forget

to normalize the cutoff frequencies by 1
2Ts

when setting fp and fs!)

(c) Repeat (b) using firpm in place of firls.

(d) Repeat (b) using fir2 in place of firls.

(e) Comment on the qualitative differences between the filters designed in parts (a)-(d).

3. In this problem you will experiment with the effects of filtering in MATLAB. Use a sampling rate

of 1
Ts

= 1000 Hz throughout.

(a) Generate a random noise waveform of duration tmax = 1 sec in MATLAB using randn. Plot

the magnitude of the signal’s Fourier transform using plottf (with the ’f’ option).

(b) Design a causal linear-phase LPF with unit passband gain, single-sided bandwidth B = 100

Hz, and group delay to = 0.25 sec, as described in problem 2(b). Lowpass filter the noise

waveform using conv, and plot the magnitude of the output’s Fourier transform using plottf

(with the ’f’ option). Remember to multiply the output of conv by Ts.

(c) Design a causal linear-phase HPF with unit passband gain, cutoff B = 100 Hz, and group

delay to = 0.25 sec, similar to problem 3(a). Highpass filter the noise waveform using conv,

and plot the magnitude of the output’s Fourier transform using plottf (with the ’f’ option).

(d) Do the results of (a)-(c) look as expected? To compare them, it might be nice to plot the three

magnitude responses on a single plot via the subplot command. (Hint: help subplot.)

4. In this problem we will learn about the inner workings of plottf, in particular how plottf

approximates the Fourier transform (FT).

Suppose that we are interested in computing the FT of an x(t) which is non-zero on the interval

t ∈ [0, tmax]. For this we know X(f) =
∫ ∞

−∞
x(t)e−j2πftdt =

∫ tmax

0
x(t)e−j2πftdt. Though

plottf is given access only to 1
Ts

-rate samples of x(t), a Riemann-sum1 approximation of the

integral says

X(f) ≈ Ts

N−1
∑

n=0

x(nTs)e
−j2πfnTs for N = tmax/Ts. (1)

Now, since we are going to plot pixels on a screen, we don’t need to compute X(f) at all values of f .

Say instead that we only care to sample X(f) at f = k
NTs

for the N integers k ∈ {−N
2 , . . . , N

2 −1}.

(Here we have assumed that N is even; the odd case is treated similarly.) Thus, from (1),

Ts

N−1
∑

n=0

x(nTs)e
−j 2π

N
kn ≈ X( k

NTs

) for k ∈ {−N
2 , . . . , N

2 − 1}. (2)

The routine plottf approximates the FT according to (2). If you find that plottf returns an

answer which does not make immediate sense, the explanation can probably be found in (2).

In the following MATLAB experiments, use sampling rate 1
Ts

= 1000 Hz and tmax = 3 sec unless

told otherwise.

1You learned about the Riemann sum in your first calculus class. Recall that the approximation in (1) becomes exact
as Ts → 0.
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(a) In MATLAB, approximate the Dirac delta using the sampled waveform2

x(nTs) =

{

1
Ts

n = 0

0 n 6= 0
.

How does the FT returned by plottf compare to F{δ(t)}?

(b) In MATLAB, generate the sampled version of exp(j2πfot) on t ∈ [0, tmax] for fo = 9 Hz. How

does the FT returned by plottf compare to F{exp(j2πfot)}?

(c) Repeat (b) with tmax = 5 and comment.

2We use 1

Ts
here so that the Riemann-sum approximation gives

R

x(t)dt ≈ Ts

P

n
x(nTs) = 1, since we know that

R

δ(t)dt = 1 for Dirac delta δ(t).

P. Schniter, 2008 3


