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Ohm’s law:

v=1R, 1i=vG

Kirchoff’s law’s:

U1 U3

+

i1+ia+i3=0

v +vgt+v3=0

Node voltage analysis:

1. KCL at each node
2. substitute ¢ = vG at each resistor

3. solve system of equations for node voltages
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Mesh current analysis:

1. KVL around each loop
2. substitute v = iR at each resistor

3. solve system of equations for mesh currents

Superposition:
1. solve circuit assuming only one voltage/current source is active
2. add voltages/currents from each individual solution

... a consequence of our focus on linear circuits.

Thevenin/Norton equivalents:

VA vB Possible to reduce linear sources to either. ..
N vp = open circuit voltage iy = short circuit current
v
R = Ry = -
IN
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Capacitance:

1. constant voltage across < no current thru
2. no sudden voltage changes (would require infinite current!)

3. can store as well as release energy

Inductance:

1. fixed current thru < no voltage across

2. no sudden current changes (would require infinite voltage!)

3. can store as well as release energy

RC response to initial conditions:

i)

m”

KVL yields (for t > 0)

0 = v(t)+i(t)R
du(t)
dt

v(t) + RC ... a differential equation
Trying v(t) = Ke*',t > 0

0

Ke®t + RCKse® = K(14 RCs)e®
= s = —1/RC
= o) = Ke Y/FC

Applying initial condition:
Vo = v(0) = K® = K

=

Graphically:

Vo
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RL response to initial conditions:

i(t)

KCL vyields (for ¢t > 0)
0 = i(t)+v(t)G

di(t
i(t) + GL® jl(f) ... a differential equation
Trying i(t) = Kes',t > 0
0 = Ke'+GLKse™ = K(1+4 GLs)e™
= s = —1/GL

= i(t) = Ke"6h
Applying initial condition:
Iy = i(0) = K = K

= |i(t) = L e t>0
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RC response to step function & initial condition:

o(t)] 5= 777

Main idea: v(t) = vn(t) + vp(t) (superposition!)
——

——
natural  forced

Natural response:

diff eq: 0 = RCdUg—t(t) +on(t), t>0

postulate vy (t) = Kie*t, t>0
= on(t) = Kie B¢ >0
Forced response:
dvr(t)

dt
postulate vp(t) = Ko, t>0

diff eq: V4 = RC +op(t), t>0
=vp(t)=Va, t>0

Together
o(t) = Va+ Kie™FC >0
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Graphically:
i(t) N -
I Applying initial condition:
U(O) = V() = K= ‘/E) —Va
Thus
! u(t) = Va + (Vo = Va)e /P, >0
\Dua/ of the RC case! / \What about an RL circuit? /
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RC response to causal sinusoid with initial condition: Sinusoidal steady-state response:
In an RLC circuit sinusoidally driven at frequency w, all current and
voltage waveforms are sinusoidal with frequency w and thus
Vs cos(wt)u(t) completely described by their magnitudes and phases.
= phasors
Vocos(wt + ¢) = Re{Vped @9V = Re{ Vpel? -t
Again, we use  v(t) = un(t) +vp(t) o cos ) " ) {HO/-’ )
N N~ phasorV
natural forced
Natural response: Passive circuit elements can be described in terms of their effect on
dun (t current and voltage phasors:
diff eq: ():RCL()-&-UN(IS), t>0
dt = impedance Z, where V = ZI
= oy(t) = Kie B¢ >0 . .
R L Ic
Forced response: J + J + . Uj— 1
Vi =RIp Vi = jwLly Ve =—=lc
. (lUF(t) R I c jwC
diff eq: V4 cos(wt) = RCT +op(t), t>0 - - -
postulate vp(t) = Ky cos(wt + ¢) , t>0 ) ’
= acos(wt) + bsin(wt) Zr=R Zy = jwl 20 = 7
. . . Y Leads to simple (steady state sinusoidal) circuit analysis. ..
solving diff eq gives a = ]_*_(X’,‘{C)ZA, b= 1:)&(;{‘6/'\)‘2 ple ( Yy ) Y
R L C
Together
o(t) = K1e B0 4 acos(wt) + bsin(wt), >0 el
Vo cos(wt +¢) Iy cos(wt + 0)
Applying initial condition: =
v0)=W = K=V-a 7 = R+ (jwC) ™"+ jwl
Thus, fort > 0, - . V = Vet
(1) = — A o—t/RC A WRC sin(w _ 0 _
v(t) (Vo r (wRC)2>(’ i (WRO)? (cos(wt) + wRC sin(wt)) =1 = Ie=V/Z

-

/

\ .. much easier than diff eq method!
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